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Abstract: In this work the thermodynamic and magnetic properties of a two-holes parabolic quantum
dot are studied in the presence of hole-hole and hole-phonon interactions in the range of temperature
from 0 K to 50 K and in magnetic fields varying from −5 to 5 T. Calculations of energy levels
of two-holes states have been performed with a resolution of the Schrödinger’s equation and all
thermodynamic functions are derived by using the canonical ensemble. Our formalism’s numerical
calculation is essentially applied to dilute ferromagnetic semiconductors Ga1−xMnxAs containing
3% Mn. The founded results show that the magnetic an thermodynamic properties are influenced
by the magnetic field, hole-phonon and hole-hole interactions, and the confinement. The analysis of
magnetization and susceptibility justifies that The Ga1−xMnxAs quantum dots with 3% Mn content
are ferromagnetically even in the absence of a magnetic field, and show the antiferromagnetic
behaviour under certain conditions. This results are similar with the majority of the previous works.

Keywords: Hole−Phonon Interaction; Diluted Magnetic Semiconductors; Magnetic Susceptibility

2. Introduction

With the development of experimental techniques along with the theoretical under-
standing of the subject of spintronics and other related areas, the manipulation of quantum
dots with the external magnetic, electric, and electromagnetic fields have gained a lot of
prominence in recent times. The surge of the articles coming in literature is an Indicator of
the importance of such studies [1–5]. It is also interesting to note that as far as Quantum
heterostructures such as quantum wells, wires, and dots are concerned, applications based
on electron states have been dominating the studies. Strange enough that applicationbased
hole states of such quantum systems have received less attention. One possible reason
for it may be slow mobility of holes compared to the electrons in confinement. Due to
slow mobility, devices based on higher power consumption may lead lesser commercial
demands. Also, higher input powers or fields may shorten lives of such devices. Despite
these possible reasons, study of two (multiple) hole quantum devices is very interesting.
As in the case of two electron systems, the Coulombic interaction between electrons under
confinement remains dominant and plays an important part, while determining the energy
states, matrix elements, and the modification of wave functions. More or less, hole-hole
interaction plays the same role. The hole states in quantum wells, wires and dots are
now slowly gaining interest in the recent times. As holes have strong spin-orbit coupling
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(SOC) and this strong SOC helps in controlling the spin of hole states and that makes the
possibility of hole states as qubits [6]. The large SOC of holes in QDs helps in overcoming
recoherence [7,8]. The importance of hole states in QDs is documented in the literature,
both in theory and experimentally [9]. However, two hole quantum dots or for that purpose
many hole quantum dots, with hole-hole interaction being taken as Coulombic have not
attracted due attention. In addition, studies based on multihole systems with all possible
interactions such as Coulombic interaction between holes, hole- phonon interaction are
scarce. Although such studies, on electronic counterpart, are there in the literature [10–12].
Recently two dimensional hole gases in presence of SOCs in quantum wells have been
studied by Xiang et. al. [13]. They have shown that hole-hole coupling term responsible for
SOC is very important as far as spin states of hole gases is concerned. In a recent experi-
mental study Tai et. al. [14] have shown that 2-D hole gases can be manipulated through
gating, that results in a high mobility of hole gases. Implying that the short comings of
hole states based devices compared to electronic devices, may be managed or rectified, so
that devices based on hole states become commercially viable [15]. Owing to the possible
future importance of hole-based quantum structures, the studies on single/ multiple hole
quantum dots have picked momentum in recent years e.g. Delaforce et. al. [16] have re-
cently explored experimentally probe the low temperature transport in single hole quantum
dots. van-Riggelen et. al. [17] have studied 2-D quantum dots array with each quantum
dot having a single hole as charge career as possible means for quantum computation.
This point is validated as the single hole state in a semiconductor QD is better suited for
quantum information [18]. The beauty of working with the hole states is multifold. The
hole states in self-assembled quantum dots have significant anisotropy compared to the
electron states. So, prior to the studies related to applications of hole engineered devices,
knowledge of hole states i.e., energies and wavefunctions is of immense fundamental and
practical interest. In this work, we calculated energy eigenvalues and eigenfunctions of
two-hole parabolic quantum dot, subjected to external magnetic field. Also, for the near to
exact calculations, we have included the Coulombic hole-hole interaction and hole-phonon
interactions into account.

The electron-phonon interactions are although quite weak compared to repulsive
Coulombic hole-hole interactions. They are similar to spin-orbit interactions. But, their
effect on the spectrum of the QDs is very interesting and this leads to modification of
the response of QDs to external magnetic field. We have used Frohlich formation to take
hole-phonon interaction into account. Here, we study the thermal and magnetic properties
of two-hole QD in external magnetic field. The properties studied are the magnetization,
magnetic susceptibility, specific heat, and entropy. Section II deals with the theoretical
model used while in section III, the results are discussed in detail.

3. Background Theory

We start by describing our theoretical approach to determining the energy levels
of two interacting holes confined in a quantum dot and subjected to a perpendicular
magnetic field

−→
B = (0, 0, B) which is defined in the Lorentz gauge by the vector potential

−→
A =

−→
B ×−→r

2 . By taking into account the interaction with the LO-phonons, the system’s
energy can be calculated by solving the schrödinger equationHhh|i〉 = Ehh

i |i〉, whereHhh
is the Hamiltonian, which is defined as follows:

Hhh = 1
2m∗hh
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j +
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∑
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â−→q V−→q (exp

(
i−→q −→rj

)
+ H.c

] (1)

The above symbols have the following meaning: m∗hh represents the heavy-hole effec-
tive mass, h̄ω0 is the energy scale of the parabolic confinement, c represents the light speed
in a vacuum, g∗ is the electron’s Lande’s factor, µB = eh̄

2m0c is the magneton of Bohr and σ̂z
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is the Pauli matrice. The two last terms of eq 1 define the kinetic operator of a phonon and
the Hamiltonian representing the hole−phonon coupling in the Fröhlich formalism [19],
resppectively, where â+~q (â~q) is the phonon’s creation (annihilation) operator with a 3D
wave vector ~q = (~q‖,~qz), ωLO is the LO-phonons frequency and V−→q is the coefficient of
hole−phonon coupling which defined by [20]:

V−→q =

[
2πe2

V
h̄ωLO

q2

(
1

ε∞
− 1

ε0

)]1/2

(2)

where V is the volume of the crystal in the optical branch and ε0 and ε∞ are the static and
high dielectric constants, respectively.

In order to solve the schrödinger equation of the system Hhh|i〉 = Ehh
i |i〉, we first

introduce the relative and the center of mass (CM) parameters: (~r = ~r1 − ~r2 and ~R = ~r1+~r2
2 ).

Using the Lee Low Pines (LLP) method [21] the polaronic contribution can be further
simplified, and the total Hamiltonian expression given by (eq 1) is a combination of two
individual parts, Hhh = Hrel + Hcm and as a result, the system’s energy spectrum is
Ehh = Ecm + Erel . Therefore we can write:

Hrel =
P2

r
2µ

+
1
2

µΩ2r2 − 1
2

ωcLz +
e2

ε∞r
− 2αLO h̄ωLO

uLOr
(1− exp(−uLOr))− αLO h̄ωLO exp(−uLOr) (3)

and

Hcm =
P2

R
2M0

+
1
2

M0Ω2R2 − 1
2

ωcLZ +
M0h̄ωcg∗S

4m0
(4)

here µ = m∗hh/2 and M0 = 2m∗hh, Ω =
√

ω2
0 +

ω2
c

4 , ωc =
eB

m∗hhc , Lrel = mh̄ and Lcm = Mh̄ are
the angular momentum associated with relative motions and CM, respectively, where m
and M are the angular momentum quantum numbers of relative and CM part, respectively.

m and M can both take the values 0,±1,±2.... The size
1

uLO
of the two interacting holes

and the hole-phonon coupling constant αLO are defined, respectively, as [22]:

uLO =

√
2M0ωLO

h̄
, αLO =

e2

2h̄ωLO

(
2M0ωLO

h̄

)1/2( 1
ε∞
− 1

ε0

)
. (5)

Under this approach that the system’s wave function Ψn,m(ρ, ϕ) corresponding to
relative and CM motion takes the following form:

Ψn,m(ρ, ϕ) =
1√
2π

exp(imϕ) fn,m(ρ) (6)

where fn,m(ρ) is the normalized radial wave function defined as. In the framework of the
relative donor units a∗ = ε∞ h̄2

µe2 for lenght and R∗ = h̄2

2µa∗2 for energy [23]. The energies
without Coulomb potential and polaronic terms, can be written as [12]:

Ecm
NM = 2γ1(2N + |M|+ 1)−Mγ2 +

γ2g∗SM0

2m0
(7)

where γ1 = h̄Ω
2R∗ and γ2 = h̄ωc

2R∗ . By considering the hole−phonon coupling, the energy of
the relative part can be calculated by computing the complete energy expression:

Erel
nm = 2γ1(2n + |m|+ 1)−mγ2 +

∞∫
0

r f ∗n,m(r)V
int
h−ph(r) fn′ ,m′(r)δnn′δmm′dr (8)
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where

Vint
h−ph(r) =

e2

ε∞r
− 2αLO h̄ωLO

uLOr
(1− exp(−uLOr))− αLO h̄ωLO exp(−uLOr) (9)

Once the wave functions and the energy eigenvalues are determined, one can calculate
the associated thermodynamic and magnetic properties of Ga1−xMnxAs in in quantum
dot systems. The thermodynamic and magnetic functions will be evaluated within the
Boltzmann−Gibbs statistical framework utilizing the canonical partition function:

Zc = ∑
i

exp
(
−βEhh

i

)
(10)

where β = 1/kBT and kB is the Boltzmann constant. T is the temperature expressed in
Kelvin. In this approach, the main thermodynamic properties of the system can be deduced
using Zc: The heat capacity:

Cv = −kB β2
(

∂〈E〉
∂β

)
. (11)

where E is the mean energy of the system. The entropy:

S = kB β(〈E〉 − FH). (12)

where FH = F = −kB T ln Zc is the Helmholtz free energy.
Magnetization and Magnetic susceptibility:

M =
−1
Zc

∑
i

∂Ehh
i

∂B
exp
(
−βEhh

i

)
; χ =

∂M
∂B

. (13)

4. Results and Numerical Analysis

The numerical calculation of our formalism is applied essentially for the dilute ferro-
magnetic semiconductor Ga1−xMnxAs. Mn act as single acceptors in a GaAs host, it also
adds a local magnetic moment. To characterize the relative strengths in the interplay of
confinement we have introduced the length l0 =

√
}

m∗hhω0
of the harmonic potential, defined

in terms of the heavy-hole mass. In this work we focalise our self on two limit values of
confinement strength: l0 = 25 Å(h̄ω0 = 23.9 meV) and l0 = 50 Å(h̄ω0 = 6 meV). The first
case corresponds to a strong confinement case with l0 � a∗ ( a∗ is the bohr radius given in
table I) while the second case corresponds to a weak confinement with l0 � a∗.

Table 1. Ga1−xMnxAs containing 3% Mn material parameters used in the calculations extracted from
[24–29] for (Ga,Mn)As.

Material m∗e
m0

m∗h
m0

Eg(eV) ε0 ε∞ a∗(Å) R∗(meV) h̄ωLO(meV) h̄ωTO(meV) g∗ S

Ga1−xMnxAs 0.067 0.5 1.50 13.99 11.8 25 24.4 33.29 36.25 2 5
2

The variation of mean energy as a function of temperature is presented in Figure 1. It
is observed that as temperature rises, the system’s mean energy increases as well. This is
due to the fact that the system’s kinetic energy becomes more important as temperature
rises. It can be posited that the hole-phonons interaction decreases the mean energy of the
system. By reinforcing the confinement strength, the mean energy increases.
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Figure 1. The evolution of the mean energy of two holes in quantum dot structures subjected to an
applied magnetic field as a function of temperature taking into account the hole-phonon interactions
and the size effect.

It is well known that the magnetization parameter M given by Equation (13) is the
ability of the sample to retain induced magnetism in the presence of the magnetic field.
The structural phase change is associated with a magnetic phase change which can be
observed by studying the magnetization of the system as a function of temperature. In
Figure 2, we present magnetic susceptibility (a) and magnetization (b) in Ga1−xMnxAs
as function of temperature for two fixed parabolic confinement potential l0 = 50 Åand
l0 = 25 Åcorresponding to weak and strong confinement, respectively, at T = 5K with
and without hole−phonon interaction (Vh−p) taking into account the hole−hole interac-
tion (Vh−h). It is observed from the figure that for a given B the presence of hole−hole
interactions(Vh−h 6= 0) reduces the susceptibility (blue and red lines). However, with
the introduction hole−phonon interactions(black line), we can see that the Vh−p rein-
forces the susceptibility of the system. It is interesting also to note that the polaron effect
(hole−phonon coupling) in small confinement strength (l0 = 50 Å) is larger compared
with strong confinement strength (l0 = 25 Å). The same behavior is observed for the
magnetization curves(Figure 2b).

The heat capacity CV of a given material is an important parameter which is the
derivative of its thermal energy. Its calculation permits to obtain an integrated information
of all the magnetic system’s energy levels. Figure 3a, displays the variation of this quantity
as function of temperature for various magnetic fields values B = 0, 0.5, 1, 1.5, 2 and
2.5T at l0 = 25 Å. The first remark we can make here is that there is a peak observed
in the heat capacity curves correspond to Schottky anomaly. In zero field the Schottky
anomaly is observed at 0.11 K after this temperature value, the heat capacity starts to
decrease. However a magnetic field applied between 0.5T and 2.5T causes a Zeeman
splitting towards a spin system, therefore, it is possible to shift the specific heat anomaly to
a certain temperature. The peak heat capacity, which is used in the randomization of the
magnetic moments around Tc, is result of the heat absorption during the phase transition.
Once a magnetic field is imposed, the randomization process of the magnetic moments
takes place over a large range of temperature, which broadens the maximum peak [31].
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(a) (b)

Figure 2. Variation of the magnetic susceptibility (a) and magnetization (b) of the two holes as
function of temperature in the case of strong confinement (l0 = 25 Å), and for weak confinement
(l0 = 50 Å) at B = 1.5T. The red and black lines correspond to the cases without and with phonons,
respectively, taking into account the coulomb potential between two holes, the blue line is associated
the case without coulomb potential and phonons.

0 10 20 30 40 50

T(K)

Cv
/K

B

With phonons
0=25(Å)

 B=0(T)
 B=0.5(T)
 B=1.0(T)
 B=1.5(T)
 B=2.0(T)
 B=2.5(T)

(a)

0 10 20 30 40 50

 B=0(T)
 B=0.5(T)
 B=1.0(T)
 B=1.5(T)
 B=2.0(T)
 B=2.5(T)

S/
K

B

T(K)

With phonons
0=25(Å)

(b)

Figure 3. Heat capacity and entropy as a function of temperature in the presence of phonons, (a) in
the range of magnetic field from B = 0.5 to B = 2.5T at l0 = 25 Å, (b) for both strong (l0 = 25 Å) and
weak (l0 = 50 Å) confinement cases.

The heat capacity is also directly dependent on the system’s magnetic entropy S(T, H)
by S =

∫ Cv
T dT. Currently, this quantity is the object of increasing attention in the search for

potential spintronics applications. The entropy also defines the disorder and the random
character of the system. fig3b, illustrates the entropy variation (S(T,H) in (Ga,Mn)As with
temperature for various magnetic fields values (B = 0, 0.5, 1, 1.5, 2 and 2.5T) at l0 = 25 Å.
It is worth noting that, at zero temperature, the entropy of the system is nul, while the
temperature increases, S(T,H) also increases, because it increases the random character of
the system by elevating the energy. We can observe also that as the magnetic field strength
increases (from 0 to 2.5T), the entropy decreases.
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5. Conclusions

In summary, thermodynamic and magnetic properties of the diluted ferromagnetic
semiconductor Ga1−xMnxAs contained 3% Mn in Confined Systems have been studied
in detail. The founded results show that the thermodynamic and magnetic properties
properties are influenced by the magnetic field, hole−phonon and hole−hole interactions,
and the confinement which is in a good agreement with previous works.

References
1. Zutic, I.; Fabian, j.; Sharma, S.D. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323.
2. J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back and T. Jungwirth, Rev. Mod. Phys., 87, 1213 (2015)
3. A. Brataas, B. van-Wees, O. Klein, G. de-Loubens and M. Viret, Phys. Rep., 885, 1 (2020)
4. A. Hirohata, K. Yamada, Y. Nakatani, I. L. Prejbeanu, B. DiÃ©ny, P. Pirro and B. Hillebrands, Journal of Magnetism and Magnetic

Materials, 509, 166711 (2020)
5. H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine and P. Yan, Phys. Rep., 965, 1 (2022)
6. V. N. Golovach, M. Borhani and D. Loss, Phys. Rev. B, 74, 165 (2006)
7. A. Chatterjee, P. Stevenson, S. De Franceschi, A. Morello, N. de Leon and F. Kuemmeth, Nat. Rev. Phys., 3, 15 (2021)
8. G. Katsaros, J. KukuÄka, L. VukuÅ¡iÄ, H. Watzinger, F. Gao, T. Wang, J. J. Zhang and K. Held, Nano Lett., 20(7), 5201 (2020)
9. A. Manaselyan and T. Chakraborty, Euro Phys. Lett., 88, 17003 (2009)
10. M. Z. Malik, D. S. Kumar, S. Mukhopadhyay and A. Chatterjee, Physica E, 121, 114097 (2020)
11. A. Boda, B. Boyacioglu, U. Erkaslan and A. Chatterjee, Physica B, 498, 43 (2016)
12. K. Lakaal, M. Kria, J. El Hamdaoui, Varsha, V. Prasad, Vijit V. Nautiyal, M. El-Yadri, L.M. Pérez, D. Laroze and E. Feddi, J. Magn.

Magn. Mater., 551, 169042 (2022).
13. J. X. Xiong, S. Guan, J. W. Luo and S. S. Li, Phys. Rev. B, 103, 085309 (2021)
14. C. T. Tai, P. Y. Chiu, C. Y. Liu, H. S. Kao, C. T. Harris, T. M. Lu, C. T. Hsieh, S. W. Chang and J. Y. Li, Adv. Mater., 33, 2007862 (2021)
15. S. Assali, A. Attiaoui, P. D. Vecchio, S. Mukherjee, J. Nicolas and O. Moutanabbir, Adv. Mater., 34, 2201192 (2022)
16. J. Delaforce, et. al., Adv. Mater., 33, 2101989 (2021)
17. F. van-Riggelen, et. al., App. Phys. Lett., 118, 044002 (2021)
18. A. Greilich, S. G. Carter, D. Kim, A. S. Bracker and D. Gammon, Nature Photonics, 5, 702 (2011)
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