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Abstract: Optimal allocation of limited resources along with output target setting are critical in pur-

suing sustainability and competitiveness of organizations. The process of resource distribution is 

usually implemented through a central unit that routes resources to the subordinate decision-mak-

ing units (DMUs) along with DMUs lower bounds of desired efficiency. Moreover, the central unit 

has the authority to set the overall expected output targets so as to maximize organizational effec-

tiveness. In this paper, we investigate evaluation efficiency issues using a type of bilevel network 

data envelopment analysis (DEA) approach in a stochastic framework. The proposed bilevel DEA 

model takes into account stochastic conditions and optimizes centralized resource allocation and 

target setting imposing lower bounds on the efficiencies of all DMUs affiliated to the organization. 

Consequently, the total input consumption is minimized and the total output production is maxim-

ized while considering additional bounds and availability constraints for inputs. In the proposed 

bilevel model, uncertainty is introduced through the upper level (leader) problem that attempts to 

maximize organizational effectiveness while in the lower level (follower) problem it evaluates the 

efficiency of the DMUs. A solution methodology for the bilevel network DEA-based model is pre-

sented and numerical results are obtained using data from the literature. The obtained results are 

compared with those published in other case studies for centralized resource allocation DEA mod-

els.  

Keywords: Bilevel optimization; DEA; Stochastic environment; Resource allocation  

 

1. Introduction 

To increase their competitiveness and enhance their sustainability, decision-making 

units (DMUs) seek to allocate their resources optimally, maximize their output towards 

some rational targeting and evaluate their efficiency systematically. At the same time, or-

ganizational resource allocation is of great importance not only because resources are lim-

ited, but due to the fact that resource allocation has a serious impact on effectiveness, 

target setting and production planning. The process of resource distribution and target 

setting in organizations is usually implemented through a central unit that decides upon 

the resources supplied to the subordinate decision-making units (DMUs) along with 

DMUs lower bounds of desired efficiency. Moreover, the central unit has the authority to 

set the overall expected output targets so as to maximize the organizational effectiveness.  
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Data Envelopment Analysis (DEA) is a mathematical programming technique that has 

been extensively used for measuring the relative efficiency of homogeneous DMUs with 

multiple inputs and outputs [1-2]. Traditional DEA models can assess the efficiency of in-

dividual DMUs. However, they are not suitable when one considers the scenario of multi-

ple DMUs operating under the control of a higher-level, supervising entity. In such a sce-

nario it is common that the higher-level entity seeks to maximize the efficiency of each 

DMU and at the same time minimize the total input consumption and/or maximize the 

total output production. This type of network structure is typical in organizations consist-

ing of a central unit that makes centralized decisions affecting a number of subordinate 

decision-making units. The central unit decides for the allocation of limited resources to 

the DMUs and sets the output targets which are influenced by the number of resources 

distributed to the DMUs. Typical organizations that exhibit this structure might include 

banks, hospitals, universities, etc.  

DEA has been widely used for centralized resource allocation and various DEA 

based resource allocation models have been published in the relevant literature. Beasley 

[3] presented DEA based models for allocating fixed costs and input resources to DMUs 

as well as for target setting. Moreover, he reinterpreted DEA as a holistic selection of 

weights for all DMUs so as to maximize the average efficiency while in traditional DEA 

weights are chosen separately for each DMU. Lozano and Villa [4] present two DEA mod-

els for centralized resource allocation which minimize total input consumption or max-

imize total output production while considering the efficiency of the individual DMUs. 

Wu [5] presented a bilevel DEA model that optimizes the firm performance in decentral-

ized companies. The model allocates resources between the two stages of a DMU, the (first) 

stage of the leader and the (second) stage of the follower, in a cost-efficient way. Hakim 

[6] proposed a bilevel DEA model for centralized resource allocation, where the organi-

zational efficiency is maximized satisfying at the same time a lower bound on the effi-

ciency of each DMU. Ang et al. [7] propose two-stage DEA models with bilevel formula-

tions where the upper-level maximizes the organizational effectiveness while the lower-

level model constrains the efficiency of all DMUs simultaneously. Furthermore, they con-

sider two-stage DMUs, where inputs of the first stage are converted into intermediate 

measures which in turn are converted into outputs in the second stage.  

In this paper, we evaluate organizational efficiency using a bilevel network data en-

velopment analysis (DEA) approach in a framework that introduces an aspect of uncer-

tainty. The proposed model is based on the bilevel DEA model presented in Hakim et al. 

[6] and includes stochastic conditions. It attempts to optimize centralized resource alloca-

tion and target setting by imposing scenarios of lower bounds on the efficiencies of all 

DMUs belonging to the organization. Consequently, the total input consumption is mini-

mized and the total output production is maximized at the same time, while additional 

bounds and availability constraints (that is a stochasticity dimension) for inputs are con-

sidered. Concretely, in this bilevel DEA model, stochasticity takes the form of discrete 

scenarios associated with a user-defined occurrence probability. Each discrete scenario 

sets a value to the stochastic parameter of the model regarding input availability. Then 

the expected total benefit for an organization is determined through a weighted average 

of the obtained optimal solutions based on the scenarios and their realization probabilities.  

2. A stochastic bilevel DEA model for centralized resource allocation 

Roughly speaking, a bilevel program is a mathematical programming problem whose 

feasible space encapsulates the parametric solution of another mathematical program. 

Moreover, such a structure consists of an upper-level optimization problem (leader’s 

problem) and a lower-level optimization problem (follower’s problem). Objective func-

tion, decision variables and parameters are defined for the upper and the lower-level 

problems, respectively. Bilevel Programming has been used to model complex network 

structures of DMUs in a broad area of fields such as banking, engineering, supply-chain 

management, ecology, etc. [8].  
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Conventional DEA is a popular method for efficiency evaluation of DMUs where all 

input and output data used are assumed to be accurate and deterministic. However, in 

many real-world problems, input and output data may be erroneous and unavailable due 

to information loss, human errors and lack of historical data. For this reason, conventional 

DEA models have received a great deal of criticism leading to a variety of extensions that 

handle this drawback (such as fuzzy logic, stochastic approaches, models for imprecise 

data etc.) [9]. Apart from uncertainty in data, a solution may turn to infeasible or subop-

timal when it comes to implementation. Ben-Tal et al. [10] showed that even a small per-

turbation in data can lead to a considerable change in feasibility of the optimal solution. 

For DMU efficiency evaluation with uncertain data, two approaches are the most 

common, robust and stochastic optimization. Soyster [11] set the foundations for robust 

optimization, by assigning each uncertain parameter in convex programming problems 

to its worst-case value within a set. Ben-Tal and Nemirovski ([10,1212]) and El-Ghaoui 

and Lebret [13], who considered this approach as too conservative, allowed the uncertain 

parameters to uncertainty sets without the most unlikely values and derived tractable 

mathematical programs. Bertsimas et al. ([14,15]) proposed a robust optimization ap-

proach where the constructed problems remain in the same class. Mulvey et al. [16] pre-

sented an approach that uses goal programming with a description of problem data based 

on scenarios. The number of studies that deal with stochasticity in the DEA framework is 

continuously growing. Omrani et al. [17,18] developed a multi-objective DEA model to 

determine three types of efficiency, i.e., profitability, operational, and transactional for 

bank branches with uncertain data. The uncertainty in data is treated with discrete sce-

narios. The proposed models are tested in the case of 45 Iranian Agriculture bank branches 

under four different scenarios. Shakouri et al. [19] present a p-robust DEA model to eval-

uate the efficiency of DMUs under uncertainty in data where input parameters are given 

from different scenarios. Their model is tested for efficiency assessment of Iranian banking 

sector. Moreover, Shakouri et al. [20] presented Network DEA models based on Stackel-

berg and game theory under uncertainty. They too applied their models in an analysis of 

bank branch performance.  

In this paper, we propose a stochastic bilevel DEA-based model which maximizes 

the overall efficiency considering at the same time a lower bound for the efficiency of the 

DMUs. In the proposed bilevel model there are two submodels, the upper-level model 

and the lower-level model. The upper-level model determines the inputs and the outputs 

which optimize the overall efficiency by maximizing the total benefits (total outputs mi-

nus total inputs). The lower-level model computes the weights associated with the inputs 

and the outputs that maximize the efficiency of each subordinate DMU. Our approach 

exploits the leader-follower relations in the bilevel framework that cannot be easily cap-

tured otherwise. To take into consideration the uncertainty aspect, we discretize the sto-

chastic nature of resources upper bounds in the bilevel problem using the approach of 

different scenarios. Each discrete scenario sets a value to the stochastic parameter of the 

model regarding input availability along with a probability of realization that reflects the 

decision maker’s confidence or aspiration of the specific scenario to finally be realized. 

Throughout the paper, we use the following notations and definitions: 

 

Notation Definitions 

𝑛 the number of DMUs 

𝑚 the number of input resources 

𝑠 the number of output targets 

𝑝𝑟 unit price for output 𝑟 

𝑞𝑖 unit price for input 𝑖 

𝑒𝑘
∗ the optimal efficiency score for DMU 𝑘 

𝑒𝑘𝑗 cross-efficiency of DMU 𝑗 with respect to DMU 𝑘 

𝑋𝑖𝑗 the observed input 𝑖 for DMU 𝑗 
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𝑌𝑟𝑗 the observed output r for DMU 𝑗 

𝐿𝑒𝑘 the lower bound for efficiency of DMU 𝑘 

𝐿𝑥𝑖𝑘 the lower bound for input resource 𝑖 of DMU 𝑘 

𝑈𝑥𝑖𝑘  the upper bound for input resource 𝑖 of DMU 𝑘 
𝐿𝑦𝑟𝑘  the upper bound for input resource 𝑖 of DMU 𝑘 

𝑈𝑦𝑟𝑘 the upper bound for input resource 𝑖 of DMU 𝑘 

𝑥𝑖𝑘
𝑡  the input resource 𝑖 for DMU 𝑘 

𝑦𝑟𝑘
𝑡  the output target 𝑟 for DMU 𝑘 

𝑣𝑖𝑘
𝑡  the weight attached to input resource 𝑖 of DMU 𝑘 

𝑢𝑟𝑘
𝑡  the weight attached to output target 𝑟 of DMU 𝑘 

𝑤𝑡 occurrence probability of scenario 𝑡 

 

Suppose we have 𝑛 DMUs which have a bilevel network structure and each DMU 𝑗 

(𝑗 = 1, … , 𝑛) uses 𝑚 inputs 𝑥𝑖𝑘  to produce 𝑠 outputs 𝑦𝑟𝑘 . Let 𝑇 = {1, … , 𝑁} be a set of 

discrete scenarios where each of them has an occurrence probability 𝑤𝑡. For some sce-

nario tT, the upper-level optimization model for DMU 𝑘 (𝑘 = 1,2, … , 𝑛) is the following: 

𝑚𝑎𝑥
𝑥𝑖𝑘

𝑡 ,𝑦𝑟𝑘
𝑡 ,𝜆𝑗𝑘

𝑡
∑ 𝑝𝑟 ∑ 𝑦𝑟𝑘

𝑡

𝑛

𝑘=1

− ∑ 𝑞𝑖

𝑚

𝑖=1

∑ 𝑥𝑖𝑘
𝑡

𝑛

𝑘=1

𝑠

𝑟=1

  
     (1) 

s.t.   

𝐿𝑒𝑘 ≤ 𝑒𝑘
∗ (𝑘 = 1,2, … , 𝑛)      (2) 

𝑥𝑖𝑘
𝑡 ≥ ∑ 𝜆𝑗𝑘

𝑡 𝑋𝑖𝑗

𝑛

𝑗=1

 (𝑖 = 1,2, … , 𝑚; 𝑘 = 1,2, … , 𝑛) 
     (3) 

𝑦𝑟𝑘
𝑡 ≤ ∑ 𝜆𝑗𝑘

𝑡 𝑌𝑟𝑗

𝑛

𝑗=1

 (𝑟 = 1,2, … , 𝑠; 𝑘 = 1,2, … , 𝑛) 
     (4) 

∑ 𝜆𝑗𝑘
𝑡

𝑛

𝑗=1

= 1 (𝑘 = 1,2, … , 𝑛) 
     (5) 

𝜆𝑗𝑘
𝑡 ≥ 0 (𝑗 = 1,2, … , 𝑛; 𝑘 = 1,2, … , 𝑛)      (6) 

∑ 𝑥𝑖𝑘
𝑡

𝑛

𝑘=1

≤ 𝑏𝑖
𝑡 (𝑖 = 1,2, … , 𝑚) 

     (7) 

𝐿𝑥𝑖𝑘 ≤ 𝑥𝑖𝑘
𝑡 ≤ 𝑈𝑥𝑖𝑘  (𝑖 = 1,2, … , 𝑚; 𝑘 = 1,2, … , 𝑛)      (8) 

𝐿𝑦𝑟𝑘 ≤ 𝑦𝑟𝑘
𝑡 ≤ 𝑈𝑦𝑟𝑘  (𝑟 = 1,2, … , 𝑠; 𝑘 = 1,2, … , 𝑛)      (9) 

In the objective function (1) the unit costs 𝑝𝑟 of the inputs and the unit prices 𝑞𝑖 of 

the outputs are determined by the central unit. The optimal value of the objective function 

is denoted with 𝑧𝑡. Constraint (2) ensures that the efficiency of each subordinate DMU 

satisfies a lower bound set by the central unit. Constraints (3)-(4) ensure that the new 

input resources and the output targets belong to the production possibility set constructed 

by the observed inputs-outputs of all DMUs. The upper-level model is based on the vari-

able returns to scale (VRS) assumption due to constraint (5), however it can also assume 

constant returns-to-scale (CRS) ignoring the latter constraint. Constraint (7) restricts avail-

abilities of resources with the stochastic parameter 𝑏𝑖
𝑡. Constraints (8)-(9) set the lower 

and upper bounds for input resources and output targets, respectively. The lower-level 

optimization model for DMU 𝑘 (𝑘 = 1,2, … , 𝑛) under scenario t is the following: 
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𝑒𝑘
∗ = 𝑚𝑎𝑥

𝑣𝑖𝑘
𝑡 ,𝑢𝑟𝑘

𝑡 ,𝑙𝑘
𝑡

∑ 𝑢𝑟𝑘
𝑡 𝑦𝑟𝑘

𝑡 − 𝑙𝑘
𝑡𝑠

𝑟=1

∑ 𝑣𝑖𝑘
𝑡 𝑥𝑖𝑘

𝑡𝑚
𝑖=1

 
 

(10) 

s.t.   

0 ≤ ekj =
∑ urk

t yrk
t −lk

ts
r=1

∑ vik
t xik

tm
i=1

≤ 1  (𝑗 = 1,2, … , 𝑛) (11) 

urk
t ≥ 0 (𝑟 = 1,2, … , 𝑠) (12) 

vik
t ≥ 0 (𝑖 = 1,2, … , 𝑚) (13) 

The lower-level model is the standard DEA model as presented in Beasley [2]. The 

objective function (10) maximizes the efficiency of each DMU 𝑘. Constraint (11) restricts 

cross efficiency to take values between zero and one. The cross-efficiency 𝑒𝑘𝑗 is defined 

to be the efficiency of DMU 𝑘 when it is evaluated using the weights that are used to 

compute the efficiency of DMU 𝑗. Constraints (12)-(13) impose the nonnegativity of the 

input and output weights. Due to the existence of the free variable 𝑙𝑘
𝑡 , the lower-level 

model computes the variable returns to scale efficiency of DMU 𝑘.  

The stochastic bilevel DEA model is a non-linear programming problem which can-

not be solved in its bilevel form. Thus, the proposed bilevel DEA model is converted to a 

single level optimization problem according to Theorem 1 in [5]. The single level problem 

for the proposed model is as follows:  

𝑚𝑎𝑥
𝑥𝑖𝑘,𝑦𝑟𝑘,𝜆𝑗𝑘,

∑ 𝑝𝑟 ∑ 𝑦𝑟𝑘
𝑡

𝑛

𝑘=1

− ∑ 𝑞𝑖

𝑚

𝑖=1

∑ 𝑥𝑖𝑘
𝑡

𝑛

𝑘=1

𝑠

𝑟=1

 
 

(14) 

s.t.   

𝐿𝑒𝑘 ≤ 𝑒𝑘𝑘 =
∑ 𝑢𝑟𝑘

𝑡 𝑦𝑟𝑘
𝑡 − 𝑙𝑘

𝑡𝑠
𝑟=1

∑ 𝑣𝑖𝑘
𝑡 𝑥𝑖𝑘

𝑡𝑚
𝑖=1

 
(𝑘 = 1,2, … , 𝑛) 

(15) 

xik
t ≥ ∑ λjk

t Xij

n

j=1

 
(𝑖 = 1,2, … , 𝑚; 𝑘 = 1,2, … , 𝑛) 

(16) 

𝑦𝑟𝑘
𝑡 ≤ ∑ 𝜆𝑗𝑘

𝑡 𝑌𝑟𝑗

𝑛

𝑗=1

 
(𝑟 = 1,2, … , 𝑠; 𝑘 = 1,2, … , 𝑛) 

(17) 

∑ 𝜆𝑗𝑘
𝑡

𝑛

𝑗=1

= 1 
(𝑘 = 1,2, … , 𝑛) 

(18) 

𝜆𝑗𝑘 ≥ 0 (𝑗 = 1,2, … , 𝑛; 𝑘 = 1,2, … , 𝑛) (19) 

∑ 𝑥𝑖𝑘
𝑡

𝑛

𝑘=1

≤ 𝑏𝑖
𝑡  

(𝑖 = 1,2, … , 𝑚) 
(20) 

𝐿𝑥𝑖𝑘 ≤ 𝑥𝑖𝑘
𝑡 ≤ 𝑈𝑥𝑖𝑘  (𝑖 = 1,2, … , 𝑚; 𝑘 = 1,2, … , 𝑛) (21) 

𝐿𝑦𝑟𝑘 ≤ 𝑦𝑟𝑘
𝑡 ≤ 𝑈𝑦𝑟𝑘  (𝑟 = 1,2, … , 𝑠; 𝑘 = 1,2, … , 𝑛) (22) 

0 ≤ 𝑒𝑘𝑗 =
∑ 𝑢𝑟𝑘

𝑡 𝑦𝑟𝑘
𝑡 − 𝑙𝑘

𝑡𝑠
𝑟=1

∑ 𝑣𝑖𝑘
𝑡 𝑥𝑖𝑘

𝑡𝑚
𝑖=1

≤ 1 
(𝑘 = 1,2, … , 𝑛; 𝑗 = 1,2, … , 𝑛) 

(23) 

𝑢𝑟𝑘
𝑡 ≥ 0 (𝑘 = 1,2, … , 𝑛; 𝑟 = 1,2, … , 𝑠) (24) 
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𝑣𝑖𝑘
𝑡 ≥ 0 (𝑘 = 1,2, … , 𝑛; 𝑖 = 1,2, … , 𝑚) (25) 

The single-level problem is a non-linear/non-convex programming problem due to 

constraints (15) and (23). The superscript 𝑡 in the variables of the single-level model is 

used mostly for notational convenience, since the model is separable over each scenario t. 

To estimate the optimal strategy for an organization concerning centralized resource allo-

cation and target setting, we compute the expected total profit, that is a weighted average 

of the total optimized profits using as weights the occurrence probability for all scenarios.  

3. Computational results 

In this section, we present preliminary computational results that we obtained by 

solving the proposed bilevel model for an example using data that appeared first in [18]. 

The single-level DEA-based model is implemented in Python with the use of the Pyomo 

library and solved on a PC with 16GB RAM and CPU 2.6 GHz.   

In this example, 10 DMUs are considered which consume two inputs and produce 

two outputs. We consider three scenarios under uncertainty conditions, with realization 

probabilities 𝑤1 = 0.3, 𝑤2 = 0.2, 𝑤3 = 0.5. For each scenario we have set the following 

upper bounds for the availability of the two inputs 𝑏1
1 = 98, 𝑏2

1 = 90, 𝑏1
2 = 100, 𝑏2

2 = 110, 

𝑏1
3 = 90 and 𝑏2

3 = 100. The input and output costs and prices for the two inputs and the 

two outputs are 𝑞1 = 2, 𝑞2 = 2, 𝑝1 = 10, 𝑝2 = 5. The upper and lower bounds for inputs 

and similarly for outputs are determined with the following rule: the upper input bound 

𝑈𝑥𝑖𝑘  (upper output bound 𝑈𝑦𝑟𝑘) is 110% of the input 𝑥𝑖𝑘
𝑡  (output 𝑦𝑟𝑘

𝑡 ) and the lower in-

put bound 𝐿𝑥𝑖𝑘 (lower output bound 𝐿𝑦𝑟𝑘) is the 90% of the input 𝑥𝑖𝑘
𝑡  (output 𝑦𝑟𝑘

𝑡 ). Fur-

thermore, the lower-bound efficiencies for the ten DMUs are from Table 5 in [5]. The data 

we use for inputs and outputs are discretionary and non-categorical and are presented in 

Table 2 in [5]. The results obtained for each of the three scenarios are shown in 错误!未找

到引用源。. These results describe the optimal allocation of resources and output targets 

achievement for an organization with 10 subordinate DMUs under each scenario. The 

profits are 198.533 for scenario 1 and 2 and 188.046 for scenario 3. The expected total 

profit is 193.29.  

4. Conclusions 

The stochastic bilevel DEA model that we presented considers leader-follower rela-

tions, the desirable efficiency for DMUs and data uncertainty at the same time. One of the 

main advantages of this model is that it enables decision-makers to obtain an optimal 

strategy for resource allocation and output targeting in a holistic manner taking into con-

sideration the efficiency objectives of DMUs. To overcome the difficulties in estimating 

the future optimal organizational benefits when data uncertainty is taken into account, 

we rely on an approach that considers discrete scenarios for each of the stochastic model 

parameters in order to determine the total expected profit. The expected profit of each 

scenario is realized using some discrete probability distribution determining the occur-

rence event of each scenario. Of course, there exist limitations and several issues need to 

be further investigated. The number of scenarios that must be designed ex ante and the 

computational needs of the problem for a large number of scenarios are under investiga-

tion. Another issue is the development of a 2-stage stochastic model with recourse action 

and emphasis on observed inputs/outputs when it comes to uncertainty. Finally, addi-

tional work is needed in the process of actually specifying the scenarios and in improving 

the existing solution methodologies for the stochastic bilevel DEA model.  
 

Table 2. Input and output results for the three scenarios  

DMUs 𝒙𝟏𝒌
𝟏  𝒙𝟐𝒌

𝟏  𝒚𝟏𝒌
𝟏  𝒚𝟐𝒌

𝟏  𝒙𝟏𝒌
𝟐  𝒙𝟐𝒌

𝟐  𝒚𝟏𝒌
𝟐  𝒚𝟐𝒌

𝟐  𝒙𝟏𝒌
𝟑  𝒙𝟐𝒌

𝟑  𝒚𝟏𝒌
𝟑  𝒚𝟐𝒌

𝟑  
1 8.1 8.1 2.2 1.1 8.1 8.1 2.2 1.1 8.1 8.1 2.2 1.1 

2 10.8 7.2 3.3 1.1 10.8 7.2 3.3 1.1 10.8 7.2 3.3 1.1 
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3 6.3 10.8 2.2 2.2 6.3 10.8 2.2 2.2 6.3 10.8 2.2 2.2 

4 6.6 10.0 5.1 3.3 6.6 10.0 5.1 3.3 6.0 10.0 5.0 3.0 

5 10.4 5.5 4.4 4.1 10.4 5.5 4.4 4.1 9.6 5.5 4.11 3.89 

6 7.2 9.0 3.3 3.3 7.2 9.0 3.3 3.3 7.2 9.0 3.3 3.29 

7 12.3 9.4 6.3 5.4 12.3 9.4 6.3 5.4 10.8 10.0 5.8 5.4 

8 14.0 6.0 8.0 2.0 14.0 6.0 8.0 2.0 12.7 6.6 7.45 2.19 

9 10.8 10.8 1.1 5.7 10.8 10.8 1.1 5.7 10.8 10.8 1.1 5.7 

10 8.4 8.2 3.3 5.1 8.4 8.2 3.3 5.1 7.7 8.3 3.3 4.7 
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