. . . . . . . . . . . . . . .

# Developing Biopolymer Based Edible Films with Improved Anti-Microbial Properties.

# Authors: Katyayani Kashyap, Yamini Sudha Sistla, Shumyla Mehraj Chemical Engineering Department Shiv Nadar Institude of Eminence

............





# INTRODUCTION

- ✤ Global market of edible packaging -US\$1004 million with an annual growth rate of 6.3%
- Packaging contributes one-third to waste generated by industrial sectors
- Edible coating-An effective measure to tackle the global issue
- Improves shelf life of consumable items
- Improves barrier for moisture, gas and microorganism



Source : https://www.grandviewresearch.com/industry-analysis/food-packaging-market(1)

https://news.ihsmarkit.com/prviewer/release\_only/slug/chemicals-plastic-storm-ocean-plastic-waste-brewing-tidal-wave-consumer-activism-and-i(2)

# METHODOLOGY

- □ Multiple trials conducted using varied composition of components.
- □ Components weighed and dissolved in distilled water.
- □ Solution was homogenized(stirrer) at 40C and pH of 4.2 maintained.
- □ Homogenization using ultrasonic sonicator.
- Device the petri dish and dried in a humidity chamber (Temp: 40C, Humidity-60%).
- Peeled off, sealed in pouches and stored in a vacuum desiccator.







Trial without humidifier

Excess humidity

Transparent, flexible thin protein-polysaccharide film

## **RESULTS AND DISCUSSIONS contd.,**

### Design of Experiment

| RUN NO. | GLUTEN(g) | CASTOR OIL(g) |
|---------|-----------|---------------|
| 1       | 0.75(+1)  | 0.125         |
| 2       | 0.25(-1)  | 0.125(-1)     |
| 3       | 0.75      | 0.375(+1)     |
| 4       | 0.25      | 0.375         |
|         |           |               |

### □ FTIR Results

✤ DOE based FILM



## **RESULTS AND DISCUSSION contd.,**

### Contact Angle

 The results show that in general the hydrophobicity was improved for films based on design of experiment in comparison to control films.

### U WVTR Test

- Standard specimen size sent to Northern India Textile Research Association and Sree Chitra Tirunal Institute For Medical Sciences & Technology
- o Analysis done for the test using water method



Films

4



## **RESULTS AND DISCUSSION contd.,**

### □ <u>Thickness Test</u>

Transparency Test



# 0-25mm 0.01

All films were thin and falls in the range of  $0.125\pm0.004$  which is in accordance with the std. range( $\leq 0.25$  mm).

### 23.90 20 17.37 Total Color Change(E) 15.68 15.86 15 11.32 11.07 11.6 10 -5 0 -PS PS-PR PS-PL R1 R2 R3 R4

FILMS

All films were transparent with E ranging between 11-25. L-light/dark a-red/green b-yellow/blue

$$\Delta E^*_{ab} = \sqrt{(L^*_2 - L^*_1)^2 + (a^*_2 - a^*_1)^2 + (b^*_2 - b^*_1)^2}$$

where  $L_2^*, a_2^*, b_2^*$  are values of reference transparent film and  $L_1^*, a_1^*, b_1^*$  are values of prepared films

### **RESULTS AND DISCUSSION**

### Mechanical Properties

- □ Film R2 had the highest tensile strength.
- □ Film R4 had the maximum load at break.
- □ Lower gluten content with higher plasticizer content may improve mechanical properties.
- □ Film R3 had the lowest tensile strength and load at break.
- □ Higher plasticizer content may not always improve mechanical properties.
- □ Optimizing the gluten and plasticizer content can lead to films with improved mechanical properties.



### **RESULTS AND DISCUSSIONS contd.,**

### **BIODEGRADABILITY**



## **RESULTS AND DISCUSSIONS contd.,**

### □ Coating on fruits and vegetable



Day-1



Day-6

### Antimicrobial Test Bacteria Used: E. coli

**Purpose:** To prove improved anti-microbial property using growth of inhibition

**Result:** Zone of inhibition was formed of 3.2 cm against well created of 1 mm in which film solution was added



## CONCLUSIONS

- □ The polysaccharide-polymer films were successful developed with plasticizer range between 5%
  - to 15% and protein range between 10% to 30%.
- □ All films made including control films were thin, flexible and transparent
- □ Films based on DOE compared to control films showed:
- Improved barrier properties
- o Improved shelf life
- Improved hydrophobic properties
- Biodegradability and anti-microbial properties
- □ All films were completely soluble in water
- □ Moisture content for all films ranged between 0.05-1%
- FTIR spectra provides information regarding material state and new bond formation for the samples
- Polysaccharide based edible films- An environmental friendly alternative to petroleum-based polymers

### **REFERENCES**

- Abral, H., Basri, A., Muhammad, F., Fernando, Y., Hafizulhaq, F., Mahardika, M., Sugiatri, 12 E., Sapuan, S. M., Ilyas, R. A., & Stephane, I. (2019). A simple method for improving the 13 properties of the sago starch films prepared by using ultrasonication treatment. Food 14 Hydrocolloids, 93, 276–283.
- J. Bai & A. Plotto, Coating for fresh fruits and vegetables, In edible coating and films to improve food quality, Edited by Jinhe Bai CRC Press, pp. 186-248 (2012)
- E.A. Baldwin, M.O. Nesperos-Carriedo & R.A. Baker, Use of edible coating to preserve quality of lightly and slightly processed product, Criti. Rev. Food Sc. Nutri. 35, pp. 509-552 (1995)
- W. Borchard, A. Kenning, A. Kapp & C. Mayer, Phase diagram of the system sodium alginate/water: A model for biofilms, Int. J. Boil. Macromol.; (2005)
- F. Debeaufort, G.J.A. Quezada & A. Voilley, Edible films and coating: Tomorrow's packaging: A review, Criti. Rev. Food Sc. and Nutri. 38, pp. 299-313 (1998).
- L.J. Harris, J.N. Farber, L.R. Beuchat, M.E. Paris, T.V. Suslow, E.H. Garrett & F.F. Buster, Outbreak association with fresh produce, Compre. Rev. Food Sc. 78-141 (2003)
- J.J. Kester & O.R. Fennema, Edible films and coatings: A review, Food tech., 40, pp. 47-49 (1986)

