Proceeding Paper

Heterogeneous Wireless Sensor Networks Energy Efficient Control Methods: A Survey †

Purushothaman Ramaiah 1*, Narmadha R. 1 and Sureshraj Se Pa 2

1 Department of Electronics and Communication Engineering, Satyabhama Institute of Science and Technology, Chennai, India; narmadha1109@gmail.com
2 Department of Electrical and Electronics Engineering, J. J. College of Engineering and Technology, Trichy, India; sureshraj2329@gmail.com
* Correspondence: purushoth8419@gmail.com; Tel.: +91-8667620159

Abstract: Due to the advancement of sensor gadget and telecommunication technology, wireless sensor networks (WSNs) have drawn a lot of observation in recent period. Inaccessible terrain, disaster zones, or polluted conditions are typically where it is deployed at random, making battery replacement or recharge challenging or even impossible. Network life span is therefore extremely important to a WSN. Abundant of power-effective strategies in a diverse wireless sensor network are surveyed in this paper. We first provide an overview of the fundamental network radio representation and how it may be utilized to analyse different trade-offs between network deployment costs, energy-efficient clustering approach. We also highlight a few protocols that can be utilised in heterogeneous networks and are energy efficient.

Keywords: heterogeneous; protocols; network life span; cost; energy conservation

1. Introduction

As batteries have a limited power capacity, they are often used to power sensor nodes in a WSN., and tough or even impossible to be put back or restore. Energy control is therefore required to effectively utilise the scarce energy ability in order to reduce the energy spent by the sensor nodes and thereby extend the lifespan of the network. To achieve this, power efficiency needs to be taken into account at every step of network system and working, not only for the transmission between specific sensor nodes, but also for the network as a whole. Energy conservation and management are the fundamental guarantors of network performance, which includes delay and throughput. In this paper we provide a survey of the schemes and protocols which has been utilized in heterogenous networks. Therefore, our intention is to help people better understanding the problems that are now facing this new field of conservation of energy.

Consumption of Power

Since it is an electronic device, the cellular detector network junction can only be powered by a little amount of power. Figure 1 depicts the traditional four main parts of a node structure: a sensor, a refining, a transmission, and energy unit. As a result, the battery health of a few nodes has a remarkable effect on the lifespan of the detector junction., which might result in major topological change and need packet re-routing and network reorganization. Consequently, power management and conservation gain extra significance the utility grid, Islanded mode which refers to an autonomous operation are described in the below sections.
These factors are the driving forces behind academics' current focus on the creation of sensor network protocols with energy aware and algorithms.

2. WSN Heterogeneous Model

Most protocols created for WSNs make the assumption that all detectors have the same repository, processing, observing, and communication abilities, which is should to be homogeneous. A set of detectors in these networks would have the same lifespan if their rates of energy consumption were the same. However in some applications of sensing, we use detectors of different potentiality in which the network should be heterogeneous. The supposition of homogeneous sensors may not be realistic in the real world since Sensor advantages requires the heterogeneous sensors in the form of sensory and conveying potentiality in contemplation to improve the stability and connectivity of the network. Additionally, even though the sensor has ideal hardware, their transmission and nodes related to sensor could differ from time to time. In actually, we can’t assure that the set of sensors node on the identical platform will have the exact identical physical characteristics. this pathology concentrates on heterogeneity during map out phase, as the sensors are created with different capabilities to fulfil the unique requirements of sensing applications.

Therefore, we will introduce WSN of heterogeneous Model and discuss about the resources based on heterogeneous in this part. In a sensor node the human sources of resources heterogeneity in a sensor node can be classified as Energy Heterogeneity [3]. The Computational heterogeneity differs from other heterogeneities by its larger memory and potential microprocessor it has. Link heterogeneity is the heterogeneity in which the heterogeneous node has high-band width and long-distance network transceiver when compared to that of the ordinary junction. This can supply further reliable data transmission. Power heterogeneity is the kind of heterogeneity in which the heterogeneous node is line generated, or else its power unit is interchangeable. The energy heterogeneity among the aforementioned 3 kind of assets heterogeneity is the most symbolic since both calculation heterogeneity and connect heterogeneity will require further power assets. Without power heterogeneity, calculation and connect heterogeneity will have a pessimistic effect on the entire sensor network, shortening its lifetime.

2.1. Effect of Heterogeneity in Wireless Sensor Networks

The following three benefits can be achieved by adding a few heterogeneous junctions to the detector network:

Prolonging network lifetime

A packet’s average power consumption for send on from the usual junctions to the drop will be much lower in a heterogeneous wireless detector system than in a homogeneous detector network.

Enhancing data communication reliability
It is well known that the reliability of detector system connect is often small. The end-to-end transportation rate is also dramatically decreased with each hop. There will be fewer hops between conventional detector junction and the drop with heterogeneous nodes. Therefore, compared to a homogeneous sensor network, a heterogeneous detector system can achieve a considerably greater end-to-end delivery rate.

Reducing data transmission latency

The processing delay of nearby nodes can be reduced due to computational heterogeneity. Additionally, the amount of time transmission queues must wait can be decreased via link heterogeneity. Another advantage of fewer hops between the sensor and sink nodes is lower forwarding latency.

2.2. **Performance Measure**

Here, we outline the metrics that can be used to gauge heterogeneous systems’ effect.

Lifespan of Network

This is the period of time from the beginning of sensor network operation until the demise of the first live node.

Number of cluster heads per round

This immediate measurement represents the number of nodes that would communicate data collected from their bunch members immediately to the sink.

Through put

Track the total data transfer rate across this network, the data convey rate from bunch heads to sinks, and the data transfer rate from no to cluster heads.

Enhancing data communication reliability

It is well known that the reliability of detector system connect is often small. The end-to-end transportation rate is also dramatically decreased with each hop. There will be fewer hops between conventional detector junction and the drop with heterogeneous nodes. Therefore, compared to a homogeneous sensor network, a heterogeneous detector system can achieve a considerably greater end-to-end delivery rate.

Reducing data transmission latency

The processing delay of nearby nodes can be reduced due to computational heterogeneity. Additionally, the amount of time transmission queues must wait can be decreased via link heterogeneity. Another advantage of fewer hops between the sensor and sink nodes is lower forwarding latency.

3. **Strategies for Power-Aware Power Control in Heterogeneous Networks**

A detector network consists of many sinks and detector junction, and base stations typically act as gateways to other system. It supplies powerful data refining, repository capabilities, and bandwidth approve points to the network’s sensor nodes. detector junction observes their surroundings, gather perceived information, and send it to the BS. However, they have physical, computational, and memory limitations. Deploying several heterogeneous nodes is effective in extending the life and reliability of wireless sensor network. Figure 2 discusses many energy-efficient heterogeneous plot.

Figure 2. Base Station Unit.
3.1. Cluster Based Approach

In a hierarchical system, detector junction is grouped into bunch, with the bunch heads acting as pass on for the data transmission to the sink while the cluster members provide their data to them. To conduct the detecting operation and convey the detected data to its bunch head across a small duration, a junction with reduced power can be employed, while a bunch head might be chosen from a node with more energy to working data from bunch members and specified data to the sink. This process allows you to even out the amount of traffic, reduce the amount of energy consumed for communication, and develop ascendant as the system grows. The main problems in bunching are cluster leader selection and cluster establishment [4]. In this case, a variety of clustering algorithms can be applied.

It is possible to categories and separate WSN clustering algorithms based on a number of distinct characteristics [20].

The following CH node traits identify several clustering strategies:

- **Mobility**: The membership of the sensors changes as a CH is travelling, necessitating constant cluster maintenance. However, stationary CH often results in stable bunches and makes managing intra- and between bunch networks easier.
- **Node types**: Only a subset of sensors used is called in some configurations, while CHs are granted access to an excessively high number of computing and communication resources in other settings.
- **Role**: A CH can either collection or fuse the sensor data it has collected, or it can easily act as a relay for the congestion generated by the detector in its bunch. When targets or phenomena are discovered, a CH may occasionally act as a base station or sink to carry out directives. Various clustering techniques have been put forth, depending on the approach and purpose. The formidable and rate of convergence of these maps out may be fixed or improve on the number of CHs and/or detector. Small power modifies bunching sed routing methods in wireless detector system (LEACH) [5].

To balance the power consumption of the detector junction in the system, LEACH chooses a small number of nodes at random to serve as bunch heads and rotates this function. Data coming from nodes inside the appropriate cluster is combined and gathered by the bunch head junction. In order to lessen the amount of data and transmission of duplicate data, bunch heads also send accrued data to the drop. Data gathering is done on a regular basis and is consolidated to sink. The setup phase and the steady-state phase are the two main phases of LEACH operation. Clusters are arranged and cluster chiefs are chosen during the setup process. The actual sending of the data to the drop takes place during the quiet phase, the next round will start after steady state phase.

After receiving this announcement message, each non-bunch head junction chooses the bunch to which they will belong for this round. The strength of the advertisement messages’ received signal is taken into account when making this choice. The bunch head creates a TDMA schedule receives all messages from nodes wanting to join this cluster, then allocates each node lot when it has time to send and calculates the number of junctions in the bunch. The sensor nodes can start sensing and sending information to cluster heads during the stead state period. Each non-cluster head node’s radio can be disabled.

Figure 3. Classification of Efficiency Energy strategies.
until the designated transmission time. After receiving all the data, the cluster heads aggregate it before passing it to the sink. In order to minimize intervention from junction belonging to other bunch, each cluster head communicates using a unique set of CDMA codes.

3.2. Approach Based on Chain

Each node in PEGASIS (power generating system for use in space) [14] is supposed to accept from and transmit to its instantaneous neighbours while as an alternative serves as the transmission figure head to the base station, which is the main idea in PEGASIS. The network’s sensor nodes will get an equal share of the energy load using this method. The i-th junction is situated at a arbitrarily position, since the nodes are first distributed randomly around the play area. The organization of the nodes to form a chain can be done in one of two ways: either by the sensor junction uses a greedy algorithm method with starts with some nodes.

As an alternative, the Base Station can figure this out. As the greedy algorithm steadily increases the neighbour distances because nodes previously on the chain cannot be revisited, we begin with this node to make sure that nodes afar from the BS have close neighbours.

Each node collects data from its neighbors in one round, fuses it with its possess data, and then sends it to the next neighbor in the bonds. To node c2, node c0 will send its particulars. Node c4 will send its data to node c2 once node c2 passes the token to it after receiving data from node c1.

4. Proposed Model

The protocols suggested for heterogeneous networks. It is necessary to either establish new protocols or make further improvements to these ones. These protocols can be expanded to handle nodes of more than three different types and to accommodate hierarchies with more than two levels.

Important challenges and aspects can explode in these models. The heterogeneity among detector junction is not only in the energy available, but also in the working power and power expending of data refining.

Future research may examine related formidable in query-driven and event-driven sensor network types, as well as multi-hop clustering and fault-tolerant mechanisms that may be employed in heterogeneous sensor networks.

In contrast, sensor nodes are aggregated into a cluster based routing protocol, effectively sending captured data to drop. Bunch heads are sometimes chosen because they are special junction that are more power efficient. How to create clusters that maximize modern communication metrics like latency and energy consumption is the most important research question surrounding such protocols. Future research should focus on the variables influencing cluster formation and cluster-head communication. Additionally, a number of energy-saving techniques have been emphasized. There are still numerous demanding and problems that need to be resolved even though many of these protocols seem promising.

Additionally, the process of data fusion and aggregation within clusters is a fascinating issue to research. The combination of sensor networks and wired networks is another area that could be studied in depth in routing protocol research in the future (i.e., Internet).

Although these protocols’ energy efficiency performance is encouraging, more study is still required to address problems like the quality of service posed by video and imaging detector and real-time applications.
5. Conclusions

This article provided the comprehensive overview of heterogeneous network in wireless sensor networks. The study attaches great importance to energy efficiency to improve network longevity, development costs, stability and all parameters, many solutions under cluster-based and chain-based approaches have been suggested.

Author Contributions: Conceptualization, methodology was done by P.R., N.R. and S.S.P.; software, validation and formal analysis, P.R., N.R. and S.S.P.; writing—original draft preparation, P.R., N.R. and S.S.P.; writing—review and editing, P.R., N.R. and S.S.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.