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Abstract: To achieve accurate position tracking, there is need to develop high-fidelity robot arm 

models that are compliant and affordable. However, physics-based models are constrained by their 

stiffness and complexity, therefore, reduced-order modelling developed from data through sub-

space system identification is proposed as a solution to this problem. A high-fidelity simulation 

model of a two-link robot arm, developed in MATLAB and Simulink was used to generate synthetic 

data and the data acquired was used for estimation and validation of first- and second-order linear 

state-space models. Due to its effective tracking characteristics, model predictive control technique 

was used for trajectory tracking. The results of the simulations demonstrate that the first-order and 

second-order models can track the intended set-points accurately, but at the cost of larger joint tor-

ques required to counteract gravity. The results demonstrate that low-order and data-compliant 

models can be used to follow trajectories with high precision. MATLAB 2020a was used for all sim-

ulations. 
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1. Introduction 

Subspace system identification is a class of techniques for estimating state space mod-

els based on low rank qualities of certain observability/prediction sets [1,2]. One major 

benefit of subspace system identification is that it does not distinguish between standard 

single-input single-output identification and multi-input, multi-output system identifica-

tion, where the input and output are vectors. In contrast, with methods like prediction 

error, the selection of model structures and appropriate parameterizations is crucial. The 

methods’ reliance on reliable numerical techniques, avoidance of optimization issues and 

potential local minima are further benefits of subspace identification [3]. 

In robotic manipulation, high-precision trajectory tracking is essential. Industrial ro-

bots deal with this by using high-performance hardware technology that are stiff but com-

pliant. However, economical robots need sophisticated control to ensure precise position 

tracking. Many literatures have extensively examined model-based control of robotic 

arms, including control in joint-space and task-space [4–12]. Due to their potentials to im-

prove control performance in comparison to conventional control approaches and poten-

tially allow the use of affordable hardware or compliant robots in tasks where high-pre-

cision trajectory tracking is required, data-driven models for controller design applied to 

robotic manipulation have attracted increasing interest in recent years. Data-driven tech-

niques can effectively incorporate prior model knowledge [13]. Modeling and control of 

low-cost robots that can achieve great tracking accuracy without sacrificing overall per-

formance and efficiency is still an open area of research. 
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In this study, we provide a subspace identification technique for estimating and val-

idating a low-order, data-compliant, and cost-effective two-link robot arm for precise po-

sition control. A high fidelity simulation model in [14] was used to generate synthetic data 

and its implementation is reported in [15]. Accurate trajectory tracking performance is 

achieved using a model predictive control (MPC) strategy. The challenge of achieving 

high precision trajectory tracking can be surmounted through the combination of data-

driven models with MPC. MPC allows for optimal operation while satisfying constraints, 

while data-driven algorithms improved system performance and their capacity to adapt 

to system changes [16,17]. 

The outline of the rest of the paper is as follows: Section 2 explains the materials and 

methods which include the dynamic model of a two-link robot, feedback linearization of 

the robot arm, the concept of sub-space based system identification and the model predic-

tive controller. Simulation results are presented in Section 3 while Section 4 concludes the 

paper. 

2. Materials and Methods 

2.1. Dynamic Model of a Two-Link Robot Arm 

A two-link planar manipulator with revolute joints is shown in Figure 1 below. 

 

Figure 1. A two-link planar manipulator with revolute joints [18]. 

Euler-Lagrange formulation is used to calculate the dynamics of the robot arm in 

terms of stored potential and kinetic energies in the system. The modeling assumptions 

are as follows: 

Given the inertial tensors, the kinetic energy of the first and second links are derived 

as follows: 

𝐼1 = [

𝐼𝑥𝑥1 0 0
0 𝐼𝑦𝑦1 0

0 0 𝐼𝑧𝑧1

] (1) 

𝐾𝑒1 =
1

2
𝑚1𝑙𝑐1

2 �̇�1
2 +

1

2
𝐼𝑧𝑧1𝑞1

2 (2) 

𝐼2 = [

𝐼𝑥𝑥2 0 0
0 𝐼𝑦𝑦2 0

0 0 𝐼𝑧𝑧2

] (3) 

𝐾𝑒2 =
1

2
𝑚2𝑣2

2 +
1

2
𝐼𝑧𝑧1(�̇�1 + �̇�2)

2 (4) 
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𝐾𝑒2 =
1

2
𝑚2𝑙1

2�̇�1
2 + 𝑚2𝑙1𝑙𝑐2(�̇�1

2 + �̇�1�̇�2)𝑐𝑜𝑠𝑞2 +
1

2
𝑚2𝑙𝑐2

2 (�̇�1 + �̇�2)
2

+
1

2
𝐼𝑧𝑧2(�̇�1 + �̇�2)

2 
(5) 

Potential energy for the first and second links are given as: 

𝑃𝑒1 = 𝑔𝑚1𝑙𝑐1𝑠𝑖𝑛𝑞1 (6) 

𝑃𝑒2 = 𝑔𝑚2[𝑙1𝑠𝑖𝑛𝑞1 + 𝑙2𝑠𝑖𝑛(𝑞1 + 𝑞2) (7) 

where, 𝑔 is the gravitational constant 

The Lagrangian equation for is given as: 

𝐿(𝑞, 𝑞) = 𝐾(𝑞, 𝑞) + 𝑃(𝑞) (8) 

𝐿 = 
1

2
𝑚2𝑙1

2�̇�1
2 +

1

2
𝑚1𝑙𝑐1

2 �̇�1
2 + 𝑚2𝑙1𝑙𝑐2(�̇�1

2 + �̇�1�̇�2)𝑐𝑜𝑠𝑞2 +
1

2
𝑚2𝑙𝑐2

2 (�̇�1 + �̇�2)
2

+
1

2
𝐼1𝑞1

2 +
1

2
𝐼2(�̇�1 + �̇�2)

2 − 𝑔𝑠𝑖𝑛𝑞1(𝑚1𝑙𝑐1 + 𝑚2𝑙1)

− 𝑔𝑚2𝑙𝑐2𝑠𝑖𝑛(𝑞1 + 𝑞2) 

(9) 

where 𝐼1 = 𝐼𝑧𝑧1 and 𝐼2 = 𝐼𝑧𝑧2 

The Lagrange equations are expressed by: 

𝛿

𝛿𝑡

𝜕𝐿

𝜕�̇�𝑖

−
𝜕𝐿

𝜕𝑞𝑖

= 𝜏𝑖 (10) 

For two-link arm, 𝑖 = 1, 2 

𝛿

𝛿𝑡

𝜕𝐿

𝜕�̇�1

−
𝜕𝐿

𝜕𝑞1

= 𝜏1 (11) 

𝛿

𝛿𝑡

𝜕𝐿

𝜕�̇�2

−
𝜕𝐿

𝜕𝑞2

= 𝜏2 (12) 

Therefore, 

𝜏1 = [𝑚1𝑙𝑐1
2 + 𝑚2𝑙1

2 + 𝑚2𝑙𝑐2
2 + 2𝑚2𝑙1𝑙𝑐2𝑐𝑜𝑠𝑞2 + 𝐼1 + 𝐼2]�̈�1

+ [𝑚2𝑙𝑐2
2 + 𝑚2𝑙1𝑙𝑐2𝑐𝑜𝑠𝑞2 + 𝐼2]�̈�2 − 𝑚2𝑙1𝑙𝑐2(�̇�2

2 + 2�̇�1�̇�2)𝑠𝑖𝑛𝑞2

+ 𝑔𝑐𝑜𝑠𝑞1(𝑚1𝑙𝑐1 + 𝑚2𝑙𝑐2) + 𝑔𝑚2𝑙𝑐2𝑐𝑜𝑠(𝑞1 + 𝑞2) 

(13) 

𝜏2 = [𝑚2𝑙𝑐2
2 + 𝑚2𝑙1𝑙𝑐2𝑐𝑜𝑠𝑞2 + 𝐼2]�̈�1 + [𝑚2𝑙𝑐2

2 + 𝐼2]�̈�2 + 𝑚2𝑙1𝑙𝑐2�̇�1
2𝑠𝑖𝑛𝑞2

+ 𝑔𝑚2𝑙𝑐2𝑐𝑜𝑠(𝑞1 + 𝑞2) 
(14) 

The matrix representation: 

[
𝑚1𝑙𝑐1

2 + 𝑚2𝑙1
2 + 𝑚2𝑙𝑐2

2 + 2𝑚2𝑙1𝑙𝑐2𝑐𝑜𝑠𝑞2 + 𝐼1 + 𝐼2 𝑚2𝑙𝑐2
2 + 𝑚2𝑙1𝑙𝑐2𝑐𝑜𝑠𝑞2 + 𝐼2

𝑚2𝑙𝑐2
2 + 𝑚2𝑙1𝑙𝑐2𝑐𝑜𝑠𝑞2 + 𝐼2 𝑚2𝑙𝑐2

2 + 𝐼2
] [

�̇�1

�̇�2
]

+ [
−𝑚2𝑙1𝑙𝑐2(�̇�2

2 + 2�̇�1�̇�2)𝑠𝑖𝑛𝑞2

𝑚2𝑙1𝑙𝑐2�̇�1
2𝑠𝑖𝑛𝑞2

]

+ [
𝑔𝑐𝑜𝑠𝑞1(𝑚1𝑙𝑐1 + 𝑚2𝑙𝑐2) + 𝑔𝑚2𝑙𝑐2 𝑐𝑜𝑠(𝑞1 + 𝑞2)

𝑔𝑚2𝑙𝑐2 𝑐𝑜𝑠(𝑞1 + 𝑞2)
] = [

𝜏1

𝜏2
] 

(15) 

The Lagrange equation can rewritten as: 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�) + 𝐺(𝑞) = 𝜏 (16) 

where, 𝑀(𝑞) is the inertial matrix, 𝐶(𝑞, �̇�) is the Coriolis and Centrifugal terms, 𝐺(𝑞) is 

the gravity term, 𝜏 is the torque or force vector 

Feedback Linearization of the Two-Link Robot Arm 
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𝑥 =  [
𝑞
�̇�] = [

𝑥1

𝑥2
] (17) 

�̇� = [
�̇�
�̈�
] = [

𝑥2

�̈� ] (18) 

From Equation (16), the link equation can be re-written as: 

�̈� = −𝑀−1(𝑞)[𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞)] (19) 

Substituting �̈� into Equation (18) gives: 

�̇� = [
𝑥2(𝑡)

−𝑀−1(𝑞)[𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞)]
] + [

0
𝑀−1(𝑞)

] 𝑢(𝑡) (20) 

Equation (20) is now in the form of the general feedback linearization expression 

given as: 

�̇� = 𝐹(𝑥) + 𝑏(𝑥)𝑢 (21) 

𝑦 = 𝐶(𝑥) = [𝑞] = [𝑥1] = [𝐼20] (22) 

where, 𝐼2 is an identity matrix. 

Linearizing around a stationary point, the Coriolis and Centrifugal forces/terms will 

disappear because they are quadratic in the angular velocity, that is, �̇� = 0. 

�̇� = [
𝑥2(𝑡)

−𝑀−1(𝑞)[𝐺(𝑞)]
] + [

0
𝑀−1(𝑞)

] 𝑢(𝑡) (23) 

�̇� = [

0 𝐼2

−𝑀−1(𝑞)
𝜕

𝜕𝑞
[𝐺(𝑞)] 0

] + [
0

𝑀−1(𝑞)
] 𝑢(𝑡) (24) 

The parameters of the linearized model can be derived thus: 

𝑀(𝑞) = [
𝑚11 𝑚12

𝑚21 𝑚22
] (25) 

𝑚11(𝑞) = 𝑚1𝑙𝑐1
2 + 𝑚2𝑙1

2 + 𝑚2𝑙𝑐2
2 + 2𝑚2𝑙1𝑙𝑐2𝑐𝑜𝑠𝑞2 + 𝐼1 + 𝐼2 (26) 

m12(q) = m21(q) = m2lc2
2 + m2l1lc2cosq2 + I2 (27) 

m22(q) = m2lc2
2 + I2 (28) 

G(q) = [
gcosq1(m1lc1 + m2lc2) + gm2lc2cos(q1 + q2)

gm2lc2cos(q1 + q2)
] (29) 

∂

∂q
[G(q)] = [

−gsinq1(m1lc1 + m2lc2) + gm2lc2sin(q1 + q2)

−gm2lc2sin(q1 + q2)
] (30) 

Table 1. This table shows the parameter values of the linearized two-link robot arm model. Param-

eter values are gotten from [21]. 

Parameter Value Unit 

m1 50  kg 

m2 150 kg 

l1 1.0 m 

lc1 0.5 m 

lc2 0.8 m 

I1 5 kgm−2 
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I2 50 kgm−2 

q1 0 rad 

q2 
𝝅

𝟐
 rad 

2.2. Sub-Space Based System Identification 

Consider a multi-input multi-output (MIMO) controllable systems where 𝑢 ∈ ℝ𝑛𝑢 

denotes the vector of constrained manipulated variables, taking values in a nonempty 

convex subset 𝒰 ∈ 𝑅𝑛𝑢 , where 𝒰 = {𝑢 ∈ ℝ𝑛𝑢|𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥}, 𝑢𝑚𝑖𝑛 ∈ ℝ𝑛𝑢 𝑎𝑛𝑑𝑢𝑚𝑎𝑥 ∈

ℝ𝑛𝑢 denote the lower and upper bounds of the input variables, and 𝑦 ∈ ℝ𝑛𝑦 denotes the 

vector of measured output variables. 𝑢 is piecewise constant and defined over an 

arbitrary sampling instance 𝑘 as: 

𝑢(𝑡) = 𝑢(𝑘), 𝑘∆𝑡 ≤ 𝑡 ≤ (𝑘 + 1)∆𝑡  

where ∆𝑡 is the sampling time and 𝑥𝑘 and 𝑦𝑘  denote state and output at the 𝑘𝑡ℎ sam-

ple time. 

The system matrices for a discrete-time linear time invariant (LTI) system takes the 

following form: 

xk+1 = Axk + Buk + wk (31) 

yk = Cxk + Duk + vk (32) 

where 𝑥 ∈ ℝ𝑛𝑥  and 𝑦 ∈ ℝ𝑛𝑦 denote the vectors of the state variables and measured out-

puts, and 𝑤 ∈ ℝ𝑛𝑥 and 𝑣 ∈ ℝ𝑛𝑦 are zero mean white vectors of process noise and meas-

urement noise with the following covariance matrices: 

E [(
wi

vj

) (wi
Tvj

T)] = (
QS

STR
) δij (33) 

where 𝑄 ∈ ℝ𝑛𝑥×𝑛𝑥 , 𝑆 ∈ ℝ𝑛𝑥×𝑛𝑦 , and 𝑅 ∈ ℝ𝑛𝑦×𝑛𝑦, are covariance matrices, and, 𝛿𝑖𝑗 is the 

Kronecker delta function. The subspace-based system identification techniques utilize 

Hankel matrices constructed by stacking the output measurements and manipulated var-

iables as follows: 

U1|i = [

u1 u2

u2 u3

… uj

… uj+1
… …
ui ui+1

… …
… ui+j−1

] (34) 

where 𝑖 is a user-specified parameter that limits the maximum order of the system (𝑛), 

and, 𝑗 is determined by the number of sample times of data. By using the previous equa-

tion, the past and future Hankel matrices for input and output are defined: 

Up = U1|i, Uf = U1|i,Yp = Y1|i,Yf = Y1|i (35) 

Similar block-Hankel matrices are made for process and measurement noises 𝑉𝑝 , 𝑉𝑓 ∈

ℝ𝑖𝑛𝑦×𝑗 and 𝑊𝑝,𝑊𝑓 ∈ ℝ𝑖𝑛𝑥×𝑗  are defined in the similar way. The state sequences are de-

fined as follows: 

Xp = [x1x2 … xj] (36) 

Xf = [xi+1xi+2 …xi+j] (37) 

Furthermore, these matrices are used in the algorithm: 

Ψp = [
Yp

Up
] ,Ψf = [

Yf

Uf
] ,Ψpr = [

Rf

Ψp
] (38) 

By recursive substitution into the state space model equations, it is straightforward 

to show: 
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Yf = ΓiXf + ϕi
dUf + ϕi

sWf + Vf (39) 

Yp = ΓiXp + ϕi
dUp + ϕi

sWp + Vp (40) 

Xf = AiXp + Δi
dUf + Δi

sWf (41) 

where: 

Γi =

[
 
 
 
 

C
CA
CA2

⋮
CAi−1]

 
 
 
 

,ϕi
d =

[
 
 
 
 

D 0 0 … 0
CB D 0 … 0
CAB
…

CAi−2B

CB
…

CAi−3B

D … 0
… … …

CAi−4B … D]
 
 
 
 

 (42) 

ϕi
s =

[
 
 
 
 

0 0 0 … 0 0
C 0 0 … 0 0
CA
…

CAi−2

C
…

CAi−3

0 … 0 0
… … … …

CAi−4 … C 0]
 
 
 
 

 (43) 

Δi
d = [Ai−1BAi−2B… ABB], Δi

d = [Ai−1Ai−2 … AI] (44) 

[I − ϕi
d] [

Yf

Uf
] = ΓiXf + ϕi

sWf + Vf (45) 

[I − ϕi
d]

Ψf
Ψp

⁄ =
ΓiXf

Ψp
⁄  (46) 

Column_Space(
Wf

Wp
⁄ ) = Column_Space (Γi

⊥T[I − Hi
d]

T
) (47) 

Therefore 𝛤𝑖  and 𝐻𝑖
𝑑  can be calculated by decomposition methods. 

2.3. Linear Model Predictive Controller 

Model Predictive Control (MPC) is an advanced algorithm that utilizes the dynamic 

model of the process to predict its future behaviour over a finite time horizon, and com-

pute an optimal control input that minimizes the cost function while satisfying the system 

constraint. It can be mathematically represented below: 

min {∑(∥ yt+k − r(t) ∥2+ ρ ∥ ut+k − ur(t) ∥2)

N−1

k=0

} (48) 

s. t. ∶  xt+k+1 = f(xt+k, ut+k) (49) 

yt+k = g(xt+k, ut+k) (50) 

umin ≤ ut+k ≤ umax (51) 

ymin ≤ yt+k ≤ ymax (52) 

xt = x(t), k = 0,… , N − 1 (53) 

According to receding horizon concept, the optimal sequence is gotten over N steps, 

while the first optimal control action u*(t) is used. New measurements/state estimates are 

gotten at time t + 1, and the process of optimization is repeated [20]. 
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3. Results and Discussions 

Figures 3 and 4 show the fit of the model outputs between the estimation data and 

the validation data. 20,001 samples of synthetic data were derived by running a simulation 

on the two-link robot arm model in Simulink. The means of the data were removed. The 

whole sample were used as estimation data, while 50% of the sample (that is, 10,000) were 

used as validation data. The best fit for the first-order model is 85.08%, the final prediction 

error (FPE) is 9.671 × 10−23, and the mean square error (MSE) is 0.0005915, using simulation 

focus. Likewise, the best fit for the second-order model is 96.34%, the final prediction error 

(FPE) is −3.561 × 10−28, and the mean square error (MSE) is 4.614 × 10−5, using simulation 

focus. It can be observed from Figures 2 and 3 that, the higher the model order, the lower 

the FPE and MSE and the better the fit that can be achieved between the measured and 

the simulation output. However, overfitting must be avoided in order to achieve a reliable 

model identification. 

 

Figure 2. Response of 1st order model identification. 

 

Figure 3. Response of 2nd order model identification. 
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Figure 4. Response of link angles for 1st link for 𝑞
1

= −𝑝𝑖/2. 

Figures 4–7 show the simulation results of the outputs (link angles) and inputs (joint 

torques) of the original model, the first-order identified model and the second-order iden-

tified model. The MPC design parameters used for trajectory tracking of the identified 

models are: 𝑁𝑝 = 100 , 𝑁𝑢 = 5 , 𝑇𝑠 = 0.05𝑠𝑒𝑐𝑠 , 𝑄(𝑡) = 𝑑𝑖𝑎𝑔(1,1)  and 𝑅(𝑡) = 𝑑𝑖𝑎𝑔(0,0) . 

The reference trajectories used for the identified model are the same with the trajectories 

used in the original model, which are 𝑞1 = −𝑝𝑖/2 and 𝑞2 = 𝑝𝑖/2. 

 

Figure 5. Response of link angles for 1st link for 𝑞
2

= 𝑝𝑖/2. 

 

Figure 6. Response of joint torques for the first link. 

 

Figure 7. Response of joint torques for the second link. 

From Figures 5 and 6, it can be observed that the first-order and the second-order 

identified model were able to track the reference, just like the original model. However, 

the second-order model settled faster than the first-order model, due to its better model-

ling accuracy. But in a situation whereby a low order system is the priority, the first-order 

model is sufficient to accomplish the task of trajectory tracking. 
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From Figure 7, it can be observed that, the torque required to achieve the trajectory 

tracking at the first joint for the second-order identified model was larger than the torque 

required to achieve the same goal for the first-order identified model. The original model 

also had a higher initial torque response of 80 Nm. This is as a result of higher model order 

of the original model and the second-order identified model, which require more actua-

tion effort compared with the first-order identified model with only one state. Also, since 

the effect of gravity is usually more pronounced at the first link, the torque required to 

maintain the link against the force of gravity tend to increase with the number of states of 

the system. 

From Figure 8, it can be observed that, the torque required to achieve the trajectory 

tracking at the second joint for the second-order identified model is the smallest when 

compared to the torque responses of the original model and the first-order model. The 

first order model has the highest torque at this joint. These responses are in accordance to 

the fact that, at the second joint, the effect of gravity is less pronounced. That is why it can 

be observed from the response of the original model that, the highest peak of the torque 

was a little above 20 Nm compared with the first link with a peak of 80 Nm. Therefore, 

more torque will be needed at this joint to maintain the stability of the second link if the 

system state(s) are low, hence, the first-order identified model possessing the highest 

torque response at this joint. 

4. Conclusions 

A data-driven model of a two-link robot arm using sub-space system identification 

is presented. Synthetic data was generated from a high-fidelity simulation model devel-

oped in MATLAB and Simulink, and the acquired data was used for model estimation 

and validation of first- and second-order linear state-space models. Model predictive con-

trol strategy was employed for trajectory tracking due to its good tracking characteristics. 

It was deduced that, the first-order model is capable of achieving trajectory tracking of the 

desired set-point, but higher toque will be required at the second joint to maintain the 

stability of the second link of the robotic manipulator. Furthermore, it was discovered that 

the second-order model also achieved good tracking performance but requires higher ac-

tuator work by the input torque at the first joint to cope with the effect of gravity. Finally, 

the original model had an initial spike of 80 Nm at the first joint due to more actuator 

work required to cope with the effect of gravity but had a reduced spike of 20 Nm at the 

second joint due to less actuator work at the joint, since the effect of gravity is less pro-

nounced at the second link. Any of the data-driven models may be used for trajectory 

tracking applications such as welding, machining, laser cutting, surgery et cetera, when 

the robot arm model is not available or is too complex to model mathematically since they 

also exhibit high trajectory tracking performance characteristics when compared with the 

original model. Finally, data-based robot arm modelling and control provides an oppor-

tunity to design a low-order system that can achieve the goal of accurate trajectory track-

ing when the number of states of the real system are too large, thereby reducing cost. Non-

linear model identification and control will be the main topics of future research. 
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