

HEALTH SCIENCES

Immunological and antimicrobial effects of venoms of endemic species of Cyprus

Tolis Panayi^{1&2}, Michalis Chrysanthou², Danae Melanthiou², Eleni Themistokli², Christos Papaneophytou², Christos Petrou¹, Yiannis Sarigiannis¹, Vicky Nicolaidou² ¹Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Cyprus ²Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Cyprus

Introduction/objectives/aims

Methods

Endemic species represent a great untapped resource for a variety of bioactive agents. Venoms have been reported to be a pool of antimicrobial peptides, and to have effects on haemolysis, inflammatory responses and the activation of the complement system. Only limited information exists about endemic species of venomous animals of Cyprus. We sought to study the effects of venoms from such species.

- The proteomic profile of the different venoms was studied using SDS-PAGE electrophoresis.
- Different concentrations of the venoms were incubated with purified C3 complement component.

Aim: to investigate the effects of these venoms on the human complement system as well as assess their antimicrobial activity.

- The antimicrobial activity of the venom extracts was evaluated by the spot assay method.
- Venom extracts from Mesobuthus cyprius (MC), Mesobuthus gibbosus (MG)*, Macrovipera lebetina lebetina (MLL) and Vipera Ammodytes (VA)* were tested against Gram-Positive and Gram-Negative strains. *closely related non-endemic species used for comparison

Results

Figure 1: SDS-PAGE of MC, MG and MLL			Figure 2: SDS-PAGE of venom + C3, and degradation of complement factor C3.											
	MC	MG	MLL		L	1	2	3	4	5	6	7	L	
~175 ~130				~175 ~130	75 30							Samples were run under reducing conditions on 12%		
~95				~95					-			-		SDS-PAGE gels and were then subjected to Coomassie

staining.
L: Ladder
1: 120 μg/mL purified C3 alone
2: C3+ 50 μg/mL MLL venom
3: C3+ 100 μg/mL MLL venom
4: C3+ 50 μg/mL MC venom
5: C3+ 100 μg/mL MC venom
6: C3+ 50 μg/mL MG venom
7: C3+ 100 μg/mL MG venom

Table 1: Antimicrobial activity of venom extracts

Bacterial Strain	Minimal inhibitory concentration ¹ (µg/spot)								
	Macrovipera Lebetina Lebetina	Vipera Ammodytes	Mesobuthus cyprius	Mesobuthus gibbosus					
Escherichia coli MG1655 ATCC-700926	122	70	n/a	n/a					
Staphylococcus epidermidis ATCC-14990	610	350	n/a	n/a					
Streptococcus pneumoniae strain J ATCC-55143	n/a	n/a	n/a	n/a					
Neisseria subflava ATCC-49275	n/a	n/a	n/a	n/a					

¹Minimal inhibitory concentration is defined as the concentration where total clearing of the spot occurred n/a= no activity detected at up to 610 μg/spot of the venom extracts

Conclusion

- Different profile of proteins was seen between the different venoms showing the importance of further characterisation.
- C3 complement factor was cleaved by the venoms; most potent effect was seen with the MLL venom.
- MLL and VA venoms had antimicrobial activity against *E.coli* and *S. epidermidis*.
 - The 2nd Intrernational Electronic Conference on Toxins 14th - 28th July 2023

 We aim to expand testing to other components, parameters of complement activation and inflammation as well as other bacterial strains.

References

Cao, L. et al. (2012) *Peptides*, 36(2), pp. 213–220; Dai, C. et al. (2008) *Antimicrobial Agents and Chemotherapy*, 52(11), pp. 3967–3972; Menaldo, D.L et al. (2016) *Molecular Immunology*, 80, pp.91–100; Luna-Ramirez, K. et al. (2017) *Toxins*, 9(1).

Acknowledgements: MedVenom LTD for the provision of venoms Contact information: <u>nicolaidou.v@unic.ac.cy</u> <u>sarigiannis.i@unic.ac.cy</u>