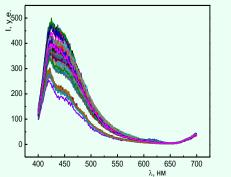
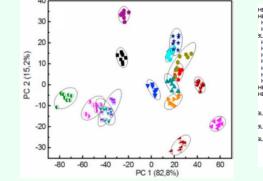
Reaction-Based Optical Fingerprinting Strategy in the Recognition of Proteins, Motor Oils, and Estimation of Food Irradiation Doses

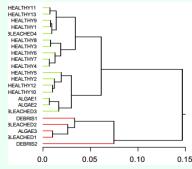

Anna V. Shik, Arseny A. Pypin, Yana V. Zubritskaya,[#] Pavel V. Sobolev, Maksim O. Baytler, Irina A. Stepanova, Irina A. Doroshenko, Ulyana A. Bliznyuk,[#] Tatyana A. Podrugina, <u>Mikhail K. Beklemishev</u>


> Lomonosov Moscow State University, Department of Chemistry #Lomonosov Moscow State University, Physics Department 119991 Moscow, Russia beklem@inbox.ru

Fingerprinting methods (smart sensing, stochastic sensing, pattern-based sensing, pattern recognition, array sensing)

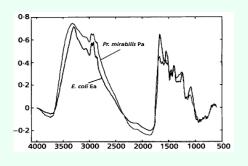
Basics


1) Obtain spectra, chromatograms, voltammograms of samples ("multidimensional data")



Convolution of data

2) Process them with chemometric methods (without assigning individual signals)


Problems solved:

- 1. Unsupervised methods clusterization (grouping)
- 2. Authentication (does the sample belong to the class?)
- 3. Supervised methods **discrimination** (to what class does it belong?)
- 4. Using a library identification.
- Sometimes: quantitation

Specific features

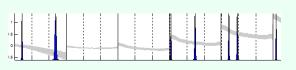
- The nature and concentration of specific compounds is not determined (exception: combination fingerprint methods, usually chromatographic)
- No sample preparation (in many cases)

Acquisition of multidimensional data

Spectroscopy:

- UV-visible
- fluorescent
 - IR

•


- Raman
- optical multisensor systems
- NMR

Chromatography:

- HPLC-MS, GC-MS...
- Capillary electrophoresis

Electrochemical methods:

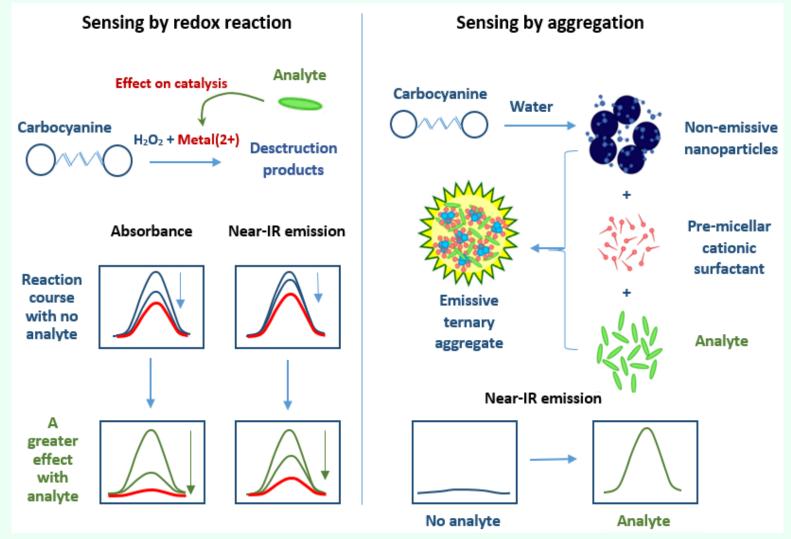
- Voltammetry
- Potentiometry including multisensor systems ("electronic nose", "electronic tongue")

Tasks solved using fingerprinting methods

- Classification of samples
- Counterfeit detection
- Authenticity assessment
- Detection of additives, impurities
- Identification of manufacturer
- Identification of the source of pollution
- Recognition of stereoisomers
- Medical diagnostics
- Quantitative analysis

Sample types

- Foods
- Beverages
- Food supplements
- Oils and fats, petroleum products
- Soils
- Pharmaceuticals
- Microbiological and medical samples


Sample preparation

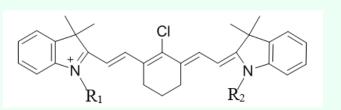
- without sample preparation
- extraction (soils, plants, pharmaceuticals, blood plasma, food)

Fluorimetric fingerprinting: stages of development

Gene- ration	Based on	References
I	Intrinsic emission spectra of samples	Long known
II	Sample + fluorophore	U. Bunz, 2007 and on; our studies since 2017
III	Sample + indicator reaction	Our studies since 2021; colorimetry: Pargari <i>J. Anal. Chem.</i> 77 (2022) 482, Liu L. <i>Food Anal. Meth.</i> 14 (2021) 1852, Wang F. <i>Chem. Commun.</i> 57 (2021) 4520, Wang L. <i>Anal. Chim. Acta</i> 1121 (2020) 26

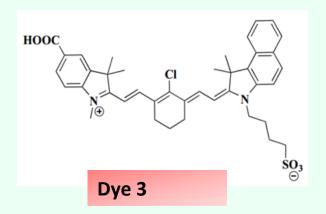
Signal formation

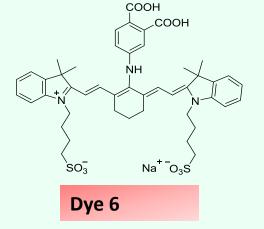
Mechanism 1. The analyte changes the rate of the dye oxidation reaction \rightarrow fluorescence fading, color change.

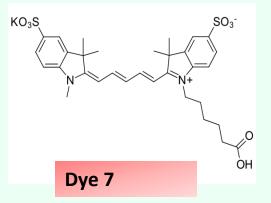

Mechanism 2. The analyte forms aggregates with an oppositely charged surfactant, the dye is **solubilized** in the hydrophobic domains of $_{6}$ the aggregate \rightarrow fluorescence enhancement.

Carbocyanine fluorophores

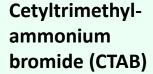
(synthesis: T.A. Podrugina, I.A.Doroshenko, Division of Medical Chemistry)

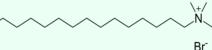


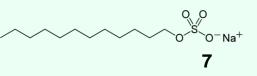

Dye 1: R_1 , $R_2 = -(CH_2)_{10}COOH$;



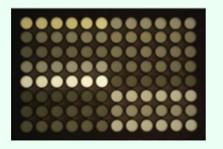
Dye 4: R_1 , $R_2 = -(CH_2)_4 SO_3^-$ **Dye 5**: R_1 , $R_2 = -(CH_2)_3 COOCH_2 CH_3$ so₃

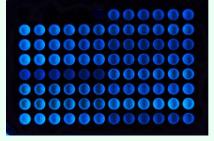

Dye 2




Counter-ions for aggregation reactions

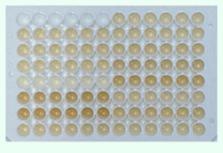
 $X = Br^{-}$





Signals and instruments

1. Near-IR fluorescence (ex 660 nm, em 700-800 nm) 2. Visible fluorescence (ex 254/365 nm, emission visible)


NIR visualizer:

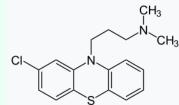
- 1 camera with light filter (>**700** nm),
- 2-red LEDs (660 nm),
- 4-96-well plate,
- 5 housing.

NIR

Camag visualizer: ex 254 and 366 нм, measurement – photo camera 3. Absorption/reflectance in visible light

Smartphone camera or Camag visualizer

Data processing

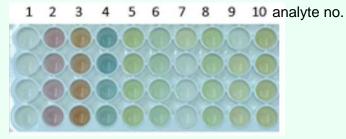

Standard approaches:

- Digitizing of images (ImageJ): fluorescence and absorbance intensities. ٠
- **RGB** splitting ٠
- Data table: *samples* (rows) *reaction times* (columns) ٠
- Principal component analysis (PCA), linear discriminant analysis (LDA), k-nearest neighbors algorithm (kNN).
- Score plots (PCA, LDA). ٠
- Validation (83% training set / 17% validation set) ٠
- $Accuracy = \frac{\text{no. of correctly assigned validation observations}}{\text{total number of observations in validation set}}$ - ×100% •

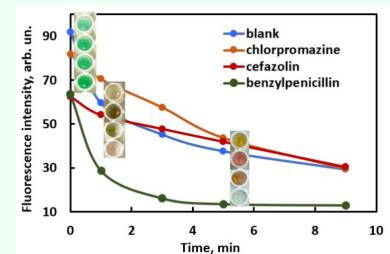
1. Recognition of 9 pharmaceuticals

Phenothiazines

- Promazine
- Chlorpromazine
- Promethazine

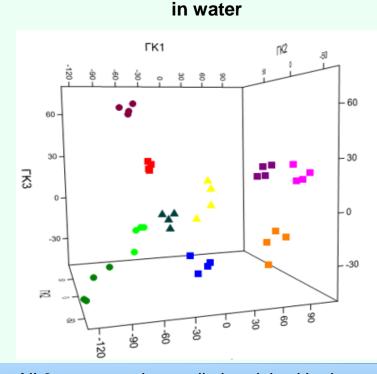


- Cephalosporins
- Ceftriaxone
- Cefazolin
- Ceftazidime
- Cefotaxime
 Penicillines
- Benzylpenicillin
- Ampicillin



- 1. Aggregation-based reaction
- 2. Redox reaction

Oxidation of a dye in the presence of 9 samples (in 5 min)



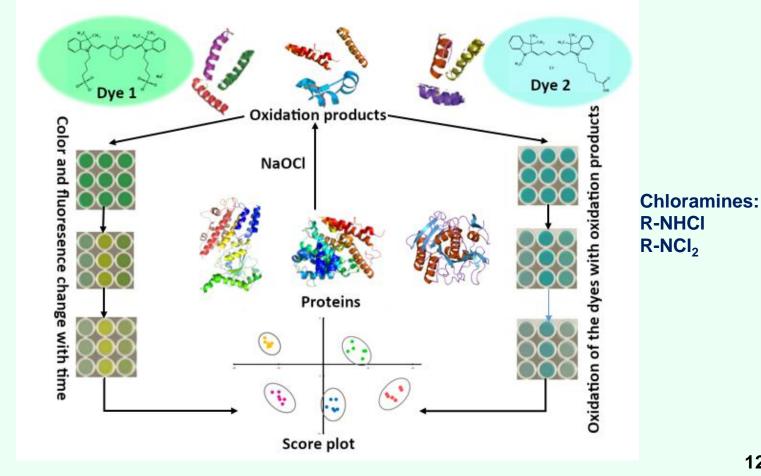
Kinetic curves of NIR fluorescence intensity of dye **3**

1. Recognition of 9 pharmaceuticals

Principal component analysis score plots

- All 9 compounds are distinguished in the space of three principal components.
- Compounds not recognized in GC1-GC2 coordinates are recognized in GC1-GC3 coordinates.

ΓK1 Promethazine 60 Promazine 60 Chlorpromazine 30 Ceftriaxone TK3 ТÃЗ Cefazoline Ceftazidime Cefatoxime -30 **Benzyl penicillin** -30 Ampicillin No analyte 23 8 22

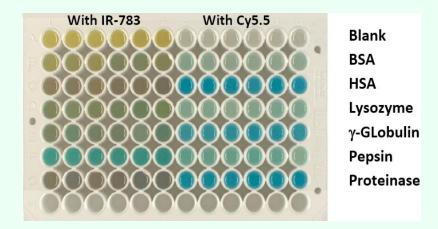

in the presence of turkey homogenate

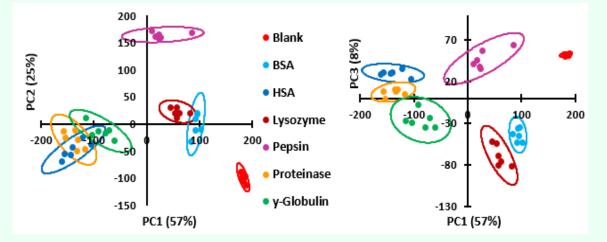
- 7 out of 9 substances are recognized in the space of three principal components.
- Discriminant analysis: 100% recognition accuracy.

2. Preoxidation of samples

Example: Lin, H.; Jang, M.; Suslick, K.S. **Preoxidation** for Colorimetric Sensor Array Detection of **VOCs**. J. Am. Chem. Soc. 2011, 133, 16786–16789.

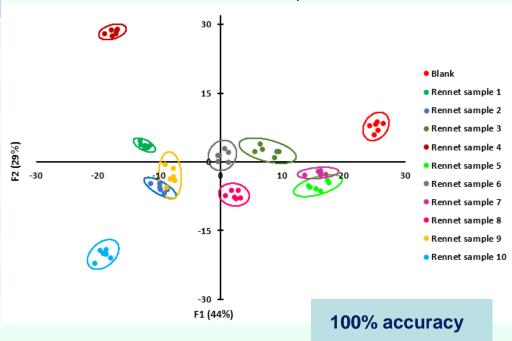
Recognition of proteins and rennet samples by oxidation with hypochlorite


Shik A.V. e.a. Sensors, 2023, 4299.

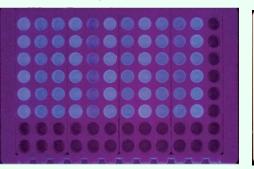

2. Recognition of 6 proteins using hypochlorite oxidation

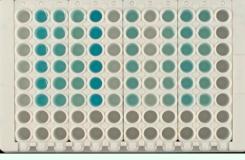
Kinetic curves of dye oxidation in the presence of proteins (NIR emission)

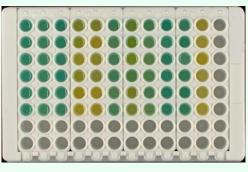
A 96-well plate with reaction mixtures (photo in the visible range; 6 replicates)


Principal component analysis (PC1 – PC2, PC3) score plots for the oxidation of two dyes by oxidation products of 6 model proteins

2. Discrimination of Rennet Samples using Hypochlorite Oxidation


List of rennet samples (chymosin + pepsin)


No	Composition of samples (country of origin)
1	Chymosin from Kluyveromyces lactis yeast (Spain)
2	Chymosin 90% / bovine pepsin 10% (Russia)
3	Chymosin from Rhizomucor miehei fungus (China)
4	Calf chymosin 50% / bovine pepsin 50% (Italy)
5	Bovine pepsin 50% / avian pepsin 50% (Russia)
6	Chymosin 70-80% / bovine pepsin 20-30% (Russia)
7	Pepsin from Rhizomucor miehei fungus (Italy)
8	Chymosin 90% / bovine pepsin 10% (France)
9	Chymosin 90% / bovine pepsin 10% (Russia)
10	Pepsin from Rhizomucor miehei fungus (Japan)

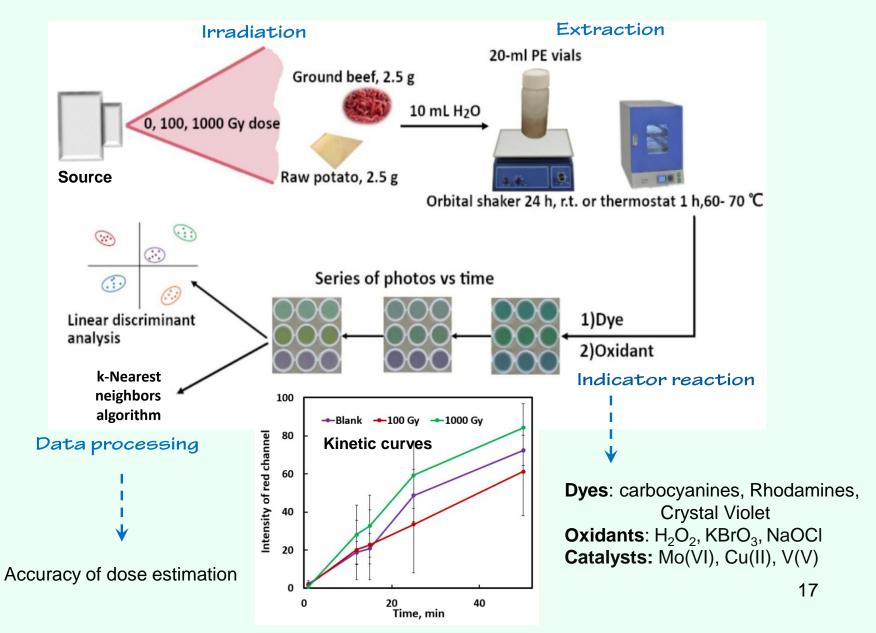

Linear discriminant analysis (LDA) score plot for 10 rennet samples

Images of the plates with reaction mixtures in the recognition of rennet samples

3. Food treatment with ionizing radiation

- Suppression of microorganisms, shelf life extension, storage and transport at higher temperatures
- Destruction of pests
- Fruit ripening delay
- Stimulation or delay of germination, etc.

Exceeding the allowed dose is harmful! Dose control:


- Irradiation of the dosimeter <u>simultaneously</u> with the product (thermoluminescent dosimeters)
- Determination of the dose *after* irradiation: methods used:
- ✓ Photoluminescence, thermoluminescence and ESR (if there are solid particles)
- ✓ IR spectroscopy (near IR)
- ✓ Determination of antioxidants (DPPH, FRAP, etc.)
- ✓ Determination of markers (alkylcyclobutanones, dihydrothymidine, etc.)
- ✓ Determination of DNA decay products (gel electrophoresis)
- ✓ Real time PCR
- ✓ Electronic nose

General disadvantages: sophisticated instrumentation, complicated protocol, long sample pre-treatment, low sample throughput. Cannot detect low doses.

"Post treatment" determination of the dose absorbed by irradiated food

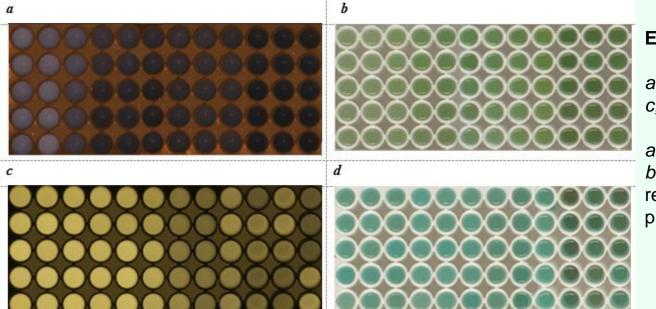
Fingerprinting strategy	Result
By intrinsic absorption and emission spectra	None
By addition of fluorophores to samples	None
By conducting indicator reactions (photometric and fluorimetric control)	Positive

Testing of Irradiation Dose in Beef and Potatoes by Reaction-Based Optical Sensing Technique

Potatoes: irradiation and measurement protocol

- Electron beam irradiation
- Removing and discarding the peel
- Using the top layer of pulp (1 mm)
- Adding antioxidant (ascorbic acid or sulfite)
- Extraction with water (4 g / 10 mL, 24 h, r.t.)
- Mixing with indicator reaction components
- Photographing every several minutes (NIR and visible / absorbance and fluorescence)
- Image processing by LDA, kNN techniques

Irradiation of potato tubers


- Damage prevention, **shelf life** extension
- Delayed **sprouting** of tubers during storage
- 1000 Gy is the **maximum** permitted dose

Examples of images

a, b – dye 1, *c, d* – dye 2,

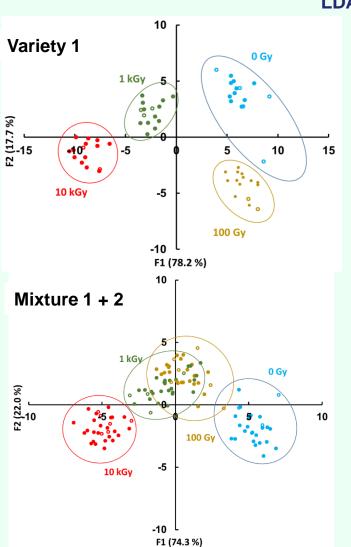
a, c - NIR fluorescence, b, d - absorbance/reflectance (smartphone photo)

Discrimination of potato samples of the same variety irradiated with electrons

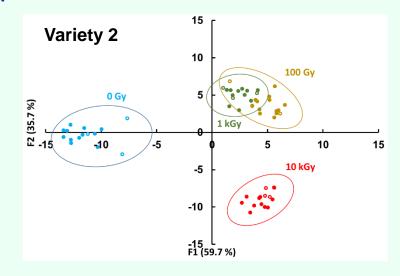
(doses of 10, 100, 1000 and 10000 Gy)

Reactions used:

- Two oxidation reactions (with dyes 2 and 3)
 Aggregation reaction with dye 1.

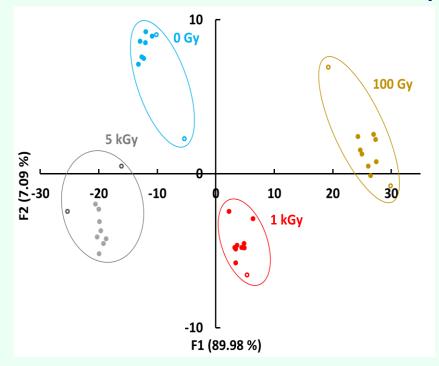

22 data columns («full dataset»:
 absorbance, fluorescence at different times for 3 reactions)

Discrimination accuracy for various datasets


Dataset	Number of data columns*	Accuracy, %	
Full dataset	22	100 —	100% accuracy – only for the full dataset
Without reaction of dye 1	20	78	
Without oxidation of dye 3	16	78	
Without oxidation of dye 2	16	85	
Only reaction of dye 2	12	85	Using fewer data
Only the data with highest standard deviation	7	64 —	columns worsens the
Data from photographs selected based on the largest visual difference	5	57	discrimination results

* Each column contains data for one indicator reaction at certain time.

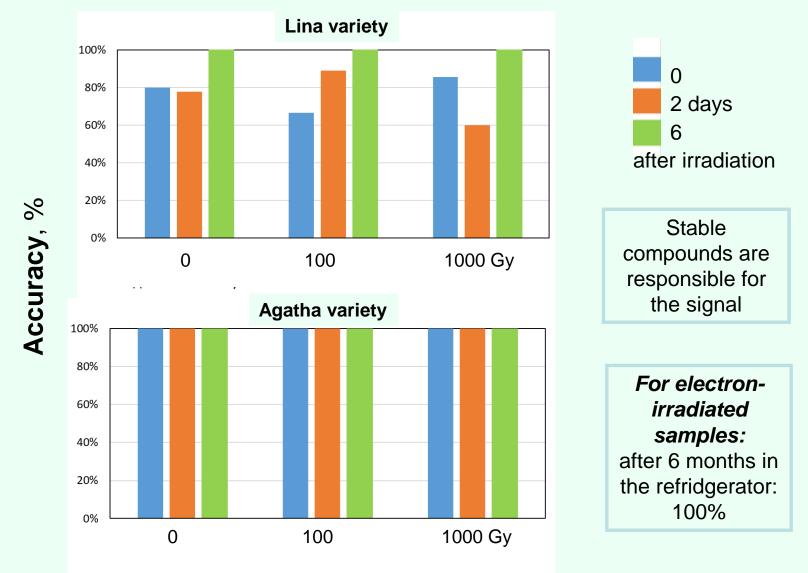
Two potato varieties (0, 100, 1000, and 10,000 Gy doses)


LDA score plots

Training sets: full symbols, validation sets: empty symbols.

Discrimination of a mixture of tubers of **two varieties** is less efficient than one variety **(85% accuracy)**

X-ray-irradiated potatoes (100 Gy, 1 and 5 kGy) (one variety)

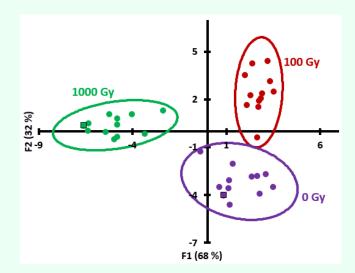


LDA score plot

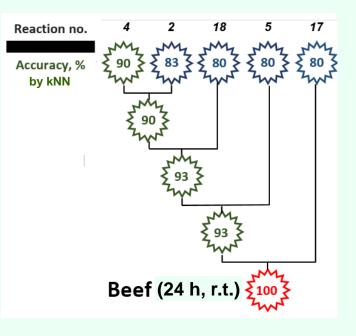
Accuracy of dose estimation: 95%

- Both types of radiation work similarly (electrons or X-rays)
- Irradiated samples are confidently distinguished from **non-irradiated** ones
- The order of dose is estimated with 85-100% accuracy .

Accuracy of dose estimation in irradiated potatoes (X-ray) stored during 0, 2, and 6 days after irradiation


Zubritskaya et al. (submitted)

3. Testing of Irradiation Dose in Raw Ground Beef


Individual reactions	No.	Accuracy, %, by LDA
Dye 4 - metamizol - H ₂ O ₂	4	93
Cy5.5 - NaOCI	18	93
Dye 2 - H ₂ O ₂	2	90
Dye 3 - lysozyme - NaOCI	17	87
IR-783 - H ₂ O ₂	3	80
TAMRA - bromate	5	63

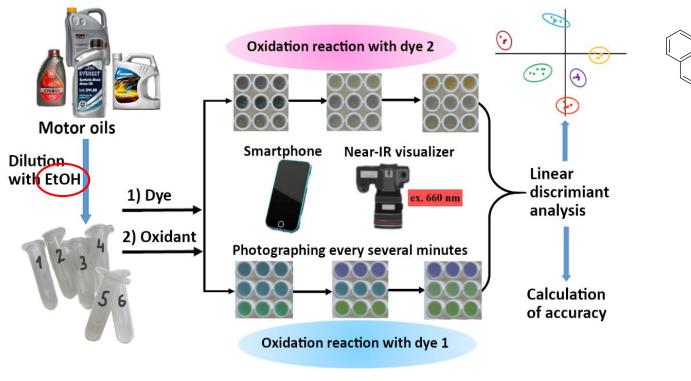
Best indicator reactions for beef

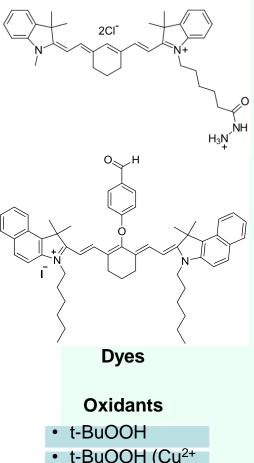
Beef extracted during 24 h, 23°C (LDA) (reaction with dye 4)

Merging data from 5 reactions (kNN):

One indicator reaction: 90-93% accuracy (by LDA); merged 5 reactions: 100% accuracy (by kNN)

Shik A.V. et al. J. Food Compos. Anal. (submitted)


Accuracy of individual observation *vs.* accuracy for the whole sample


All the reported accuracy values pertain to single observations

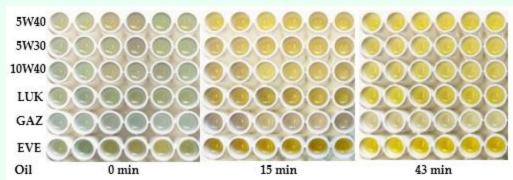
Number of parallel observations for the sample	Accuracy of dose estimation		
	for a single observation	for the whole sample	
6	90%	98.5%	
6	93%	99.4%	

4. Recognition of Fat-Soluble Samples: Discrimination of Motor Oils

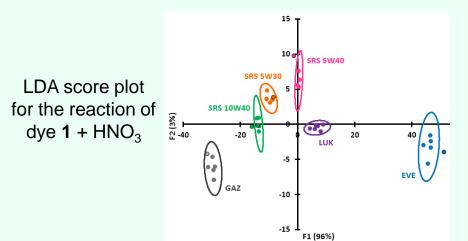
- Our indicator reactions are usually carried out in aqueous solutions
- Here we developed the reactions that occur in **ethanolic** medium (minimum water), which makes it possible to work with **fat-soluble** samples.

as catalyst)

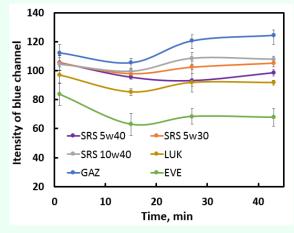
Aqua regia


HNO₃

• O₂


4. Discrimination of Motor Oils

Six oil samples:	Designation	Name	SAE grade	Manufacturer
	SRS 5W30	Cargolub TFX	5W30	SRS Schmierstoff Vertrieb GmbH
	SRS 5W40	Cargolub TFX	5W40	SRS Schmierstoff Vertrieb GmbH
	SRS 10W40	Cargolub TFX	10W40	SRS Schmierstoff Vertrieb GmbH
	LUK	Genesis Armortech	5W30	Lukoil (LLK International)
	EVE	Everest	5W40	US Global Petroleum
	GAZ	Gazpromneft Premium	10W40	Gazpromneft-SM


Indicator reaction: oxidation of dye **1** with HNO₃: images

It is difficult to distinguish such images without processing

Kinetic curves

- 100% accuracy (LDA) by one reaction
- Other fat-soluble samples can be possibly recognized

Reaction-based fingerprinting: major totals

Advantages

- Various types of samples
- No prior knowledge on markers required
- Short analysis time
- High sample throughput (5–10 hr⁻¹)
- Simple protocol
- No full-spectrum instruments
- No high-skilled personnel
- Standard software for image digitizing and data processing
- Sometimes, only commercially available reagents

Limitations

- For a new type of sample: reselect the indicator reactions
- Always analyze standards in parallel with unknown samples (common to all fingerprint methods)
- No understanding of markers ("black box" technique)

Prospects

- New indicator reactions, more sensitive to the composition of samples (improving the accuracy of discrimination)
- Combination with biological techniques

Thank you for your attention!

beklem@inbox.ru