

Abstract

1

2

3

4

5

6

7 8

9

10 11

12

Profiling of Phenolic Compounds in *Citrus* Flowers and their Biological Activities

Sepidar Seyyedi-Mansour ¹, Maria Carpena ¹, Pauline Donn¹, Paula Garcia-Oliveira ^{1,2}, Javier Echave ¹, Paula Barciela¹, Maria Fraga-Corral ^{1,2}, Lucia Cassani ^{1,2}, *, Jesus Simal-Gandara ¹, and Miguel A. Prieto ^{1,2}, *

- ¹ Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, E32004 Ourense, Spain. jsimal@uvigo.es (J.S.-G.); <u>mprieto@uvigo.es</u> (M.A.P.).
- ² Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal.
- * Correspondence: mprieto@uvigo.es (M.A.P.); lucia.vitoria.cassani@uvigo.es (L.C.)

Citrus, a genus of flowering plants in the Rutaceae family, holds substantial market importance as a 13 crop worldwide. After prolonged periods of breeding and extensive hybridization, numerous spe-14 cies have emerged, each possessing a unique metabolism that produces a diverse array of secondary 15 metabolites. It is important to note that phenolic compounds, in particular phenols and flavonoids, 16 are among the most important secondary metabolites in Citrus flowers. These chemical composi-17 tions of Citrus flowers differ depending on a variety of factors, such as variety, fruit maturity, envi-18 ronmental conditions, storage conditions, and extraction methods. Nevertheless, phenolic com-19 pounds extracted from Citrus flowers are well-recognized for their bioavailability characteristics 20 and exhibit numerous health-promoting effects, including antioxidative, anti-inflammatory, anti-21 cancer and antibacterial activities in humans. The information contained in this document provides 22 a comprehensive summary of the latest investigations conducted on the subject matter. The aim is 23 to thoroughly comprehend the biological functions of the bioactive compounds in the Citrus flowers 24 and their potential impacts on various biological systems, shedding light on their potential thera-25 peutic applications. 26

Citation: To be added by editorial staff during production.

Academic Editor: Firstname Lastname

Received: date Revised: date Accepted: date Published: date

Copyright: © 2023 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/). Keywords: Citrus flowers, phenolic compounds, biological functions, biological activities, therapeu-27tic applications.28

29

30

1. Introduction

Citrus encompassing both fresh fruit and their derived products hold considerable 31 significance within the global market and the agricultural section. Their pivotal role is 32 underscored by their widespread cultivation across over 140 countries worldwide, con-33 tributing to annual consumption and trade [1]. In the year 2021, the total output of fresh 34 citrus fruit reached a staggering 143 thousand tonnes (Figure 1) [2]. The attraction of citrus 35 fruits resides not only in their delectable flavor but also in their captivating colourings 36 and aromas. Moreover, these fruits have a combination of health-enhancing constituents, 37 comprising vitamins, minerals, essential macronutrients like carbohydrates, dietary fi-38 bers, crude proteins, lipids, and critical phenolic compounds [3]. Remarkably, the utiliza-39 tion of *citrus* fruits extends beyond their consumption in their natural form. Approxi-40 mately one-third of the global citrus output is allocated to various industries, further at-41 testing to their extensive utility [4]. 42

42 43

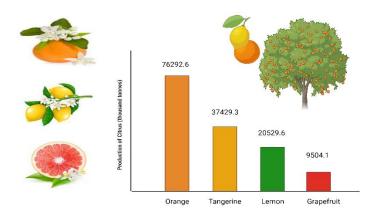


Figure 1. Global total production of four different Citrus species in the year 2021.

The *citrus* genus demonstrates classification into four principal groupings: oranges, 3 encompassing both sweet orange (Citrus sinensis) and sour orange (Citrus aurantium); tan-4 gerines (Citrus reticulata); grapefruits (Citrus paradisi); and lemons (Citrus limon) or limes 5 (Citrus aurantiifolia). Amongst the extensively cultivated citrus varieties, oranges emerge 6 as the foremost contributors, comprising over fifty percent of the global citrus yield. No-7 tably, they also dominate the international *citrus* trade, followed in succession by tange-8 rines, lemons, and grapefruits. Also, in industry, approximately 80% of processed citrus 9 fruits belong to the orange category, constituting the predominant share within the total 10 processed citrus volume [1,2,5]. 11

In recent times, there has been a surge in research focusing on the constituents of 12 citrus fruits. This encompasses various parts such as fruit juice, flowers, seeds, leaves, and 13 peels, with a primary emphasis on the composition of bioactive compounds [4]. It's worth 14noting, however, that despite the extensive exploration of these components, there re-15 mains a scarcity of comprehensive information particularly concerning *citrus* flowers. 16 Consequently, in order to attain a complete comprehension of the biological functionali-17 ties inherent to the bioactive compounds within citrus flowers and their potential ramifi-18 cations across diverse biological systems, a thorough investigation is imperative. This 19 study aims to unravel the latent therapeutic utilities that these compounds might offer. 20

2. Phenolic compounds and their biological activities in Citrus flowers

The bioactive phytochemicals present in *citrus* flowers exhibit a remarkable diversity, encompassing various subclasses, most notably polyphenols which further include phe-23 nolic acids and flavonoids. In relation to phenolic compounds, recent results have high-24 lighted the feasibility of distinguishing citrus species through analysis of their distinctive phenolic compound profiles. 26

The flowers of *Citrus aurantium* L. (Bitter orange) are considered as a promising nat-27 ural source of ingredients in the development and formulation of functional foods and 28 pharmaceutical products. A study investigated the potential in vitro antioxidant activity 29 of C. aurantium L. flowers and concerning polyphenols content, Total phenolic content 30 (TPC), and total flavonoid content (TFC) were 18.22 ± 1.44 mg GAE /g dw and $111.44 \pm$ 31 $20.60 \,\mu g \,QE / g \,dw$, respectively, thus confirming the efficiency of the extraction procedure 32 in extracting bioactive compounds [6]. One research represented the investigation of the 33 potential anti-ageing and anti-wrinkle effects attributed to the flowers of Citrus aurantium; 34 Conducting this investigation involved an examination of the physiological activity of a 35 50% ethanolic extract derived from citrus flowers, both prior to and subsequent to the 36 fermentation process. These mentioned compounds had the highest amount; Phenolic 37 (pyrogallol, syringic acid, ferulic acid and caffeic acid) and Flavonoids (neohesperidin, 38

21 22

25

rutin and naringin) [7]. In another study, Zhao et el. aimed to isolate constituents from the 1 flowers of Citrus aurantium L. var. amara Engl (a specific type of Citrus aurantium L.) in 2 order to assess their potential activities in terms of antitumor, antioxidant, antivirus, and 3 anti-inflammatory effects. The main compound identified was 5-hydroxy-6,7,3,4-tetra-4 methoxyflavone (HTF) [8]. Nabavi et al. compared four flowers of Citrus in terms of anti-5 oxidant activities. Citrus aurantium, Citrus sinensis, Citrus nobilis, and Citrus limon have TPC 6 contents of 78.76, 78.47, 62.10 and 60.01 mg gallic acid equivalent/g of extract, respectively. 7 Furthermore, Citrus limon and Citrus aurantium exhibited the highest value in TFC [9]. 8 Anthocyanins are a subgroup within the extensive category of phenolic compounds, 9 which are collectively classified under the group of flavonoids. The presence of numerous 10 types of anthocyanins in flowers of lemon (Citrus limon (L.) Burm. f.), citron (Citrus medica 11 L.), Piretto lemon (Citrus limoni medica Lush.), Rangpur lime (Citrus limonia Osbeck), and 12 Meyer lemon (Citrus meyeri Y. Tan.) has been confirmed [10]. Moreover, coumarins, a sub-13 set of polyphenolic compounds, have demonstrated noteworthy anti-cancer attributes 14 through the engagement of multiple mechanisms of action [11]. Pellizzeri et al., found 15 coumarins in flowers of two citrus species, namely lemon (Citrus limon (L.) Osbeck) and 16 grapefruit (Citrus paradise Macfad.) and they were determined as valuable resources for 17 the perfumery and cosmetic industries [12]. 18

3. Concluding Remarks

Citrus flowers emerge as valuable reservoirs of bioactive compounds, particularly phe-20 nolics and flavonoids, renowned for their pivotal role as natural antioxidants. In regards 21 to abundant production and notable scientific interest, it is evident that the benefits of-22 fered by Citrus aurantium flowers surpass those of other citrus flower variants. Numerous 23 comparative investigations have consistently demonstrated that C. aurantium flowers 24 boast the highest levels of Total Phenolic Content (TPC) and Total Flavonoid Content 25 (TFC). These secondary metabolites yield a host of advantageous biological and medicinal 26 effects. These encompass a wide array of benefits, ranging from antioxidant and antimi-27 crobial properties to potential anti-cancer, anti-diabetic, anti-obesity, and anti-anxiety ef-28 fects. Moreover, their application extends to the cosmetic and food industries. In light of 29 these findings, it is evident that C. aurantium flowers, among other citrus species, hold 30 significant promise for future research endeavors. 31

Author Contributions: Conceptualization, S.S.-M. and M.C.; methodology, S.S.-M., P.D., J.E., P.B., 33 L.C., and P.G.O.; software, S.S.-M., M.C., M.A.P., and L.C; validation, M.A.P. and L.C.; formal anal-34 ysis, S.S.-M., M.A.P., and M.F.C.; investigation, S.S.-M., P.D., P.G.-O., J.E., P.B., M.C., and M.F.C.; 35 resources, J.S.-G., M.A.P., and L.C; writing-original draft preparation, S.S.-M., P.D., and A.G.P.; 36 writing-review and editing, P.G.-O., J.E., J.S.-G., M.A.P., and L.C; visualization, S.S.-M., M.A.P., 37 and L.C; supervision, J.S.-G., M.A.P., and L.C.; project administration, M.A.P. and L.R.-n.; funding 38 acquisition, J.S.-G., M.A.P., and L.R.-n. All authors have read and agreed to the published version 39 of the manuscript. 40

Funding: This research received no external funding. The research leading to these results was supported by Xunta de Galicia, through the program EXCELENCIA-ED431F 2020/12.

Institutional Review Board Statement: Not applicable.43Informed Consent Statement: Not applicable.44Data Availability Statement: Not applicable.45

Acknowledgments: The research leading to these results was supported by MICINN, supporting46the Ramón y Cajal grant for M.A. Prieto (RYC-2017-22891) and by Xunta de Galicia, supporting the47program EXCELENCIA-ED431F 2020/12. The post-doctoral grant of L. Cassani (ED481B-2021/152),48and M. Fraga-Corral (ED481B-2019/096). The pre-doctoral grant of M. Carpena (ED481A 2021/313),49

19

32

41

42

and the pre-doctoral grants of P. Garcia-Oliveira (ED481A-2019/295), as well as the program EX-CELENCIA-ED431F 2022/01 that supports the work of J. Echave.	1 2
Conflicts of Interest: The authors declare no conflicts of interest.	3
References	4
1. Chen Y, Barzee TJ, Zhang R, Pan Z. Citrus. Integr Process Technol Food Agric By-Products [Internet]. Elsevier; 2019. p. 217-42.	5
Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128141380000095	6
2. FAO. 2021. Citrus Fruit Statistical Compendium 2020. Rome.	7
3. Zhao C, Wang F, Lian Y, Xiao H, Zheng J. Biosynthesis of citrus flavonoids and their health effects. Crit Rev Food Sci Nutr [Internet].	8
Taylor & Francis; 2020;60:566–83. Available from: https://doi.org/10.1080/10408398.2018.1544885	9
4. Tayengwa T, Katiyatiya chenaimoyo L., Mahachi LN, Chikwanha OC, Mapiye C. Mediterranean Fruits Bio-wastes. In: Ramadan	10
MF, Farag MA, editors. Mediterr Fruits Bio-wastes. Springer; 2022. p. 140–77.	11
5. Rahman MM, Jahan FI, Mim SA. A brief phytochemical investigation and pharmacological uses of citrus seed - a review.	12
Pharmacologyonline. 2019. p. 94–103.	13
6. Seyyedi-Mansour S, Chamorro F, Donn P, Carpena M, Pereira A., Otero P. Exploring the potential of Citrus aurantium L . flowers	14
as a source of antioxidant compounds. Santiago de Compostela (Spain); 2022. Report No.: The XXVIth Galician-Portuguese	15
International Conference On Chemistry. Poster.	16
7. Chen CY, Hu CY, Chen YH, Li YT, Chung YC. Submerged fermentation with Lactobacillus brevis significantly improved the	17
physiological activities of Citrus aurantium flower extract. Heliyon. 2022;8:0–9.	18
8. Zhao H-Y, Yang L, Wei J, Huang M, Jiang JG. Bioactivity evaluations of ingredients extracted from the flowers of Citrus aurantium	19
L. var. amara Engl. Food Chem. 2012;135:2175–81.	20
9. Nabavi SF, Nabavi SM, Ebrahimzadeh MA. Antioxidant activity of hydro-alcoholic extracts of 4 citrus species flower. Prog Nutr.	21
2016;18:74-80.	22
10. Fabroni S, Ballistreri G, Amenta M, Rapisarda P. Anthocyanins in different citrus species: An UHPLC-PDA-ESI/MSn-assisted	23
qualitative and quantitative investigation. J Sci Food Agric. 2016;96:4797–808.	24
11. Davatgaran-Taghipour Y, Masoomzadeh S, Farzaei MH, Bahramsoltani R, Karimi-Soureh Z, Rahimi R, et al. Polyphenol	25
nanoformulations for cancer therapy: experimental evidence and clinical perspective. Int J Nanomedicine [Internet]. 2017;Volume	26
12:2689–702. Available from: https://www.dovepress.com/polyphenol-nanoformulations-for-cancer-therapy-experimental-	27
evidence-a-peer-reviewed-article-IJN	28
12. Pellizzeri V, Costa R, Grasso E, Dugo G. Valuable products from the flowers of lemon (Citrus limon (L.) Osbeck) and grapefruit	29
(Citrus paradisi Macfad.) Italian trees. Food Bioprod Process [Internet]. 2020;123:123–33. Available from:	30
https://linkinghub.elsevier.com/retrieve/pii/S0960308520304442	31 32 33