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Abstract: Urban industrial areas are often a matter of concern due to the emissions of air pollutants 

that may affect the air quality of the adjacent cities. The aerosol pollutants are monitored by gov-

ernmental agencies that employ regulatory monitoring stations which are very accurate, but also 

very expensive, bulky, and maintenance demanding. For this reason, it often happens that the 

monitoring of the air quality in large areas are covered by few stations. This situation can lead to 

the building of air pollutant maps having a low spatio-temporal resolution. An appealing way to 

address this issue is represented by the Low-Cost miniaturized gas Sensors (LCSs) employed in the 

Low-Cost air quality Monitors (LCMs). Despite the various and unquestionable points of strength 

characterizing these devices, the scientific community has raised several warnings about the accu-

racy of their measurements and many caveats in their use. In this study, a new LCM model de-

signed and implemented in our laboratories has been used to perform the measurements of the 

NO2 and PM concentrations in the industrial area of Brindisi (Italy). Data gathered by the LCM 

have been compared with reference instrumentations for a rigorous analysis of the performance 

achievable through these low-cost technologies in this particular case. 
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1. Introduction 

Several studies have demonstrated the existence of a direct link between exposure to 

air pollutants and issues concerning the public health [1,2]. Air pollution levels are mon-

itored by the equipment of governmental agencies, but they are characterized by high 

costs due to their purchasing, maintenance, and logistical issues [3]. As a consequence, 

often times, few monitoring points are deployed on the territory, causing the impossibil-

ity to build air pollutant maps having an adequate spatio-temporal resolution [3,4]. This 

issue has been addressed in recent years by developing low-cost technologies which 

have introduced the Low-Cost miniaturized Sensors (LCSs) and the Low-Cost air quality 

Monitors (LCMs) in the worldwide market [5,6]. The strong points of such devices are 

directly linked to their cheapness compared to the regulatory-grade equipment, their 

high portability grade, and their low power consumption [7]. The appealing characteris-

tics concerning these technologies have also induced the scientific community to inves-

tigate their use in application areas very similar to the classic “air pollution monitoring”, 

such as, for example, the malodor detection near landfill sites [8,9]. However, the flip side 

of these technologies is represented by a lower accuracy of measurements compared to 

the regulatory-grade equipment due to the interfering effects of the environmental var-

iables, such as, temperature and humidity, and also due to their insufficient sensitivity 

and selectivity [3,10,11]. To improve the performance of LCSs and LCMs, different 
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strategies have been explored, but the most promising appear to be the application of 

Artificial Neural Networks (ANNs), Multivariate Linear Regression (MLR) algorithms, 

or other machine learning techniques to the data representing the measurements per-

formed through such devices [3,7,12,13,14,15,16,17,18]. 

In this work, a LCM called SentinAir was used for monitoring the NO2, PM2.5 and 

PM10 concentrations in the industrial area of Brindisi (Italy). This site is located near the 

city center and, therefore, the concentrations of the aforementioned pollutants in this area 

can significantly affect the air quality in the adjacent locations. The LCM used in this 

experiment was equipped with several LCSs: a couple of NO2B43F sensors by Alpha-

sense [19] for NO2 detection, and three samples of PMS5003 sensors by Plantower [20] for 

measuring PM2.5 and PM10 concentrations. 

2. Materials and methods 

The LCM used for this experiment is a device designed and implemented in the la-

boratory of the ENEA Research Center of Brindisi called SentinAir. A complete descrip-

tion of the hardware and the software of SentinAir can be found in earlier published ar-

ticles [21,22]. The LCM was used to measure NO2, PM2,5, and PM10 concentrations in a 

location which coordinates are 40°38'03.6"N, 17°58'39.0"E. Data quality provided by this 

device was evaluated through the use of reference instruments. NO2 sensor measure-

ments were compared with the 405 nm NOx monitor by 2Btech [23], while the APM-2 by 

Comde-Derenda [24] was employed for assessing PM measurements. 

As concerning the performance indicators, the coefficient of determination (R2), the 

Mean Absolute Error (MAE), and the Root Mean Squared Error (RMSE) were adopted to 

understand the grade of reliability of data provided by the LCSs. R2, MAE, and RMSE are 

defined as follows: 

R2 =                   (1), 

 

                 (2), 

 

 

              (3), 

 

where  represents the ith measurement of the reference,  is the ith concentration value 

given by the sensor, N is the number of observations,  represents the average of the 

sensor concentration measurements, and  is the average of the reference measurements. 

Data elaboration has been carried out by using the Scikit-learn libraries written in Python 

language [25-28]. Python platform is an open-source software freely downloadable from 

the on-purpose website [26]. 

The sampling rate of both LCM and reference instruments was set to 5 minutes, and 

therefore hourly averages were considered for each pollutant. 

The analog output signals provided by the electrochemical sensors for NO2 meas-

urements were converted into gas concentrations by using a Multi-Layer Perceptron 

(MLP) [29], which is an ANN already successfully used in previous works [30,31]. The 

MLP used in this work has three hidden layers composed of respectively 150, 50, and 150 

neurons, which have a “logistic” activation function (for further details, see [26,32]). 

The PMS5003 sensors provide PM10 and PM2.5 concentrations as output; therefore, 

we compared their measurements with the reference ones, and subsequently, a MLR al-

gorithm was applied to improve their performance. It is already known that the ambient 

humidity is a source of error for optical PM sensors [33,34]. For this reason, the relative 

humidity and the raw PM concentrations given by the sensor outputs were selected as 

predictors for the MLR model [34]. 
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3. Results 

The NO2 measurements started on the 28th of April 2023 and ended on the 2nd of 

May 2023 due to an unexpected breakdown of the reference instrument. The final dataset 

composed of hourly averages was split in two parts containing roughly the same number 

of records. The first one (the calibration period) was used to train the ANN, while the 

second one (the validation period) was used to validate the measurements. The predic-

tors used as inputs for the ANN were the signals of the “working” and “auxiliary” elec-

trodes of the NO2B43F sensors [19], and the relative humidity. In table 1, some statistics 

of the environmental variables monitored are reported. 

Table 1. Statistics of the environmental variables monitored during the NO2 measurements. 

 Calibration period Validation period 

 Min Max Median Min Max Median 

NO2 [ppb] 3.3 20.6 10.4 2.8 20.9 6.3 

T [°C] 12 26 20 13 26 17 

RH[%] 32 78 49 43 88 73 

 

The performance indicators related to the two NO2 sensors installed inside the LCM 

are reported in table 2. 

Table 2. Performance indicators of NO2 sensors. 

 Calibration period Validation period 

 R2 MAE [ppb] RMSE [ppb] R2 MAE [ppb] 
RMSE 

[ppb] 

NO2B43F(1) 0.818 1.4 2.0 0.439 3.4 3.6 

NO2B43F(2) 0.727 1.9 2.4 0.005 3.8 5.9 

 

In figure 1, the plots of the time series referring to the NO2 measurements are ex-

posed for a better understanding of the LCS performance. 

 

 

 

(a) (b) 

Figure 1. Time series of NO2 measurements related to: (a) the calibration or training period of the ANN; (b) the validation 

of the ANN predictions. 

The PM measurements were carried out from the 22th of May 2023 to the 4th of July 

2023. Due to an unexpected power failure, data from the 16th of June to the 21th of June 

were lost. The final dataset consisting of these hourly averages was split in two parts, 
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each of them containing 1053 records: the first one was used for the “calibration” of the 

MLR model, while the second one for its “validation”. 

In table 3, some significant statistics about the most relevant environmental varia-

bles are summarized. 

Table 3. Statistics of the environmental variables monitored during the PM measurements. 

 Calibration period Validation period 

 Min Max Median Min Max Median 

PM2.5 [µg/m3] 4.2 29.3 10.0 0.3 43.8 8.0 

PM10 [µg/m3] 10.2 54.8 24.8 4.6 94.9 20 

T [°C] 17 34 24 20 38 26 

RH[%] 28 80 62 26 88 59 

 

In table 4, the performance indicators related to the raw measurements carried out 

by the LCM (without the application of the MLR algorithm) are reported; while in table 5, 

the performance indicators representing the improvements achieved through the appli-

cation of the MLR algorithm are shown. 

Table 4. Data related to the three sensors installed in the LCM under test and to the dataset com-

posed of raw measurements. 

  R2 MAE [µg/m3] RMSE [µg/m3] 

PMS5003(1) 

PM10 

0.411 7.9 9.6 

PMS5003(2) 0.391 7.5 10.0 

PMS5003(3) 0.359 8.3 10.8 

PMS5003(1) 

PM2.5 

0.859 9.9 11.3 

PMS5003(2) 0.854 12.5 14.0 

PMS5003(3) 0.835 14.2 15.8 

 

To offer a more intuitive view of the improvements achieved by considering the ef-

fect of the relative humidity, in figure 2, the plots of the time series related to the PM 

sensor data after the application of the MLR algorithm are shown along with the refer-

ence measurements. 

Table 5. Data related to the three sensors installed in the LCM under test. The performance indi-

cators were computed for both the calibration and the validation dataset. 

 

 

Calibration period Validation period 

 R2 
MAE 

[µg/m3] 
RMSE [µg/m3] R2 

MAE 

[µg/m3] 

RMSE 

[µg/m3] 

PMS5003(1)  0.567 4.9 6.8 0.495 5.8 7.8 

PMS5003(2) PM10 0.541 5.1 6.9 0.481 5.9 7.9 

PMS5003(3)  0.533 5.2 7.0 0.448 6.1 8.1 

PMS5003(1)  0.843 1.2 1.7 0.906 0.9 1.3 

PMS5003(2) PM2.5 0.834 1.2 1.7 0.907 1.0 1.3 

PMS5003(3)  0.863 1.0 1.5 0.863 1.0 1.5 
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(a) (b) 

Figure 2. Time series plots of the PM data in the validation period related to: (a) PM2.5 measurements; (b) PM10 meas-

urements. 

4. Discussion and conclusion 

The NO2 concentration levels during the experiment were very low (20.9 ppb as 

maximum value). By considering the validation period, this element has determined a 

poor capability to follow the trend of the reference for the NO2B43F(2) sensor (R2 = 0.005), 

and a moderate capability for the NO2B43F(1) (R2 = 0.439). This difference is likely due to 

the different sensitivity characterizing the two sensors. As matter of fact, the sensor sen-

sitivity can vary from 200 nA/ppm to 650 nA/ppm (see [19]), namely, one sensor can have 

more than three times the sensitivity of another one. This element can cause a remarkable 

difference in terms of R2. The global indication that we can get from these data can be 

summarized by the fact that electrochemical sensors tested in this experiment have a 

limited capability to provide reliable measurements in case of environments very low 

polluted by NO2. 

The PM sensors under test have shown a good performance in the case of PM2.5 

measurements and a moderate performance in the case of PM10 (see table 4). By consid-

ering the relative humidity variable, we found that their performance has been further 

improved. This aspect suggests us that the measurements of PM2.5 provided by these 

sensors can be considered very reliable; while, in the case of PM10, we can conclude that 

their measurements are moderately reliable, even though we consider the effect of the 

relative humidity. 
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