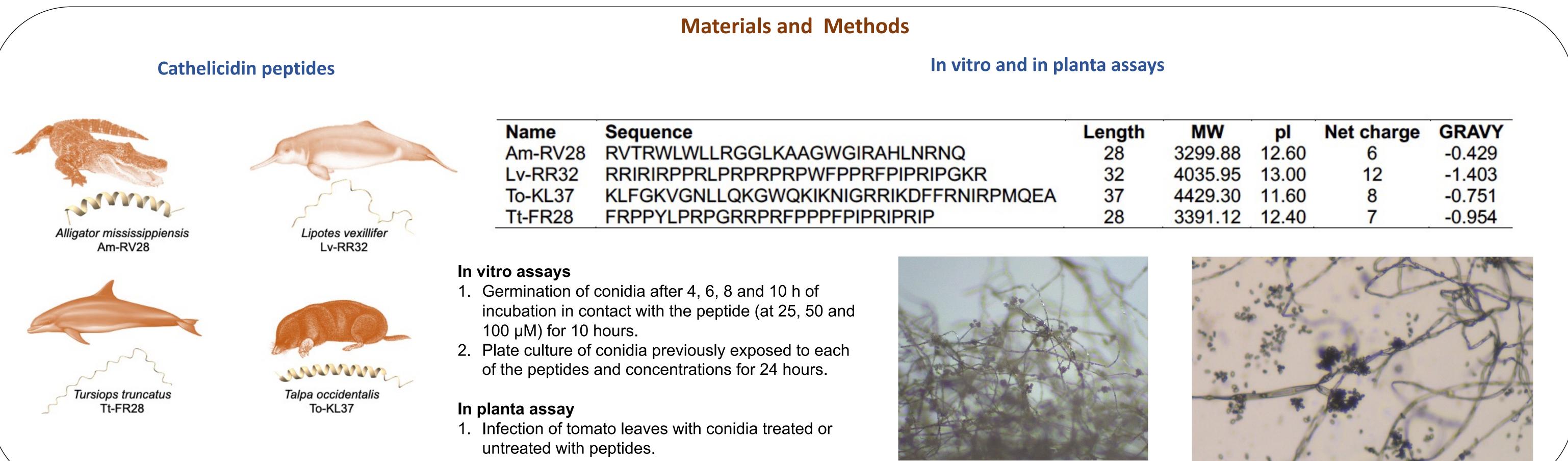


Biotechnology of Macromolecules

Exploring vertebrate cathelicidins: a new weapon against Botrytis cinerea

José Manuel Pérez de la Lastra^a, Patricia Asensio-Calavia^{a,b}; Andrea Otazo-Pérez^{a,b}, Sergio González-Acosta^{a,b}, Beatriz González-Almécija^a, Antonio Morales-delaNuez^{a†}, Victoria Baca González, Manuel R. Lópeza

^aMacromolecules Biotechnology Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), San Cristóbal de La Laguna, Spain.

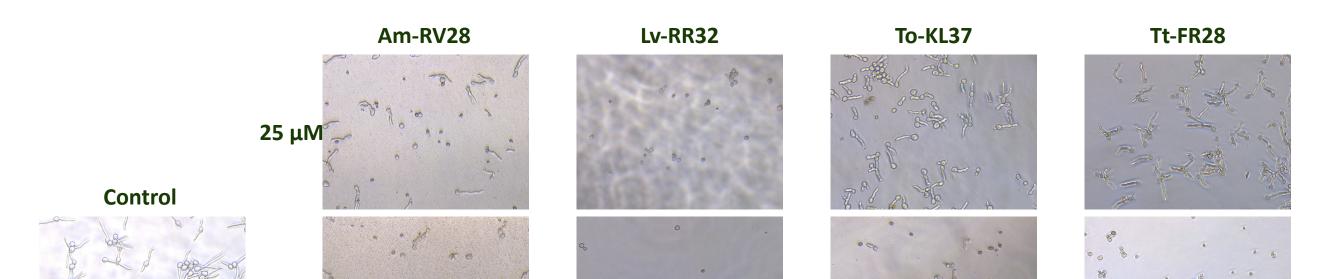

^bEscuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, San Cristóbal de La Laguna, Spain.

[†]Current address: Animal Production and Biotechnology Group, Institute of Animal Health and Food Safety, University of Las Palmas de Gran Canaria, Spain.

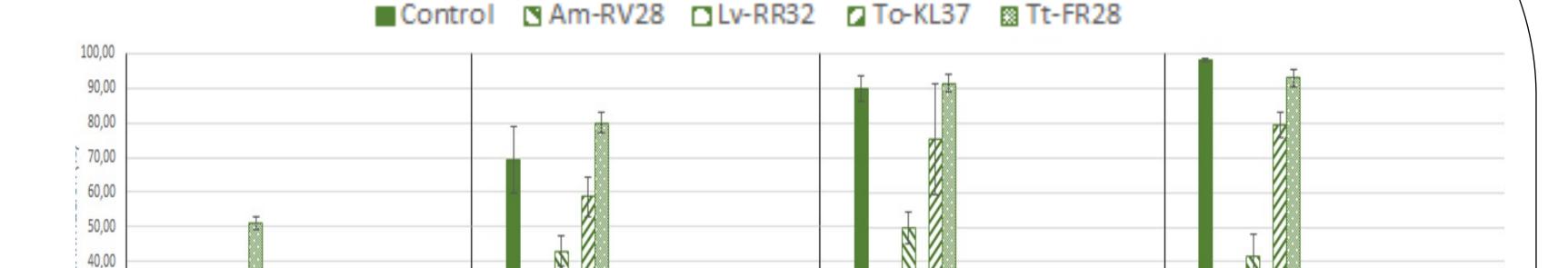
*Presenting author: jm.perezdelalastra@csic.es

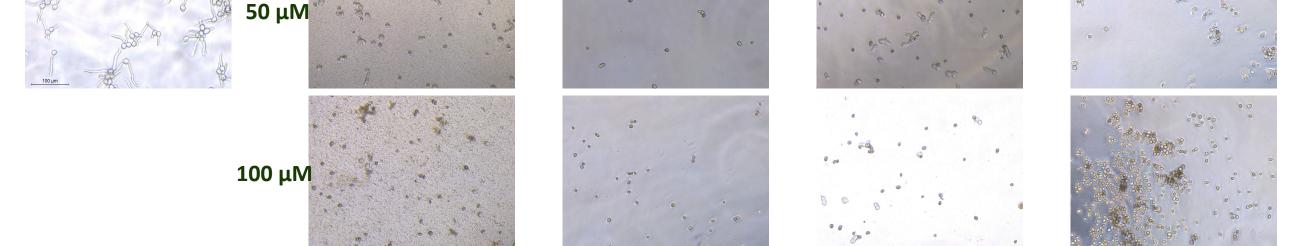
Introduction

Botrytis cinerea is a fungal phytopathogen that has a significant impact on agriculture worldwide. The predominant approach to botrytis control is the use of synthetic organic fungicides. Finding alternative strategies to control this fungal infection is a major challenge. In this study, we evaluated the efficacy of four peptides from the cathelicidin family in controlling *B. cinerea* infection in vitro and in planta using tomato leaves. This study serves as a basis for further research on the potential of these peptides for crop protection and disease control.

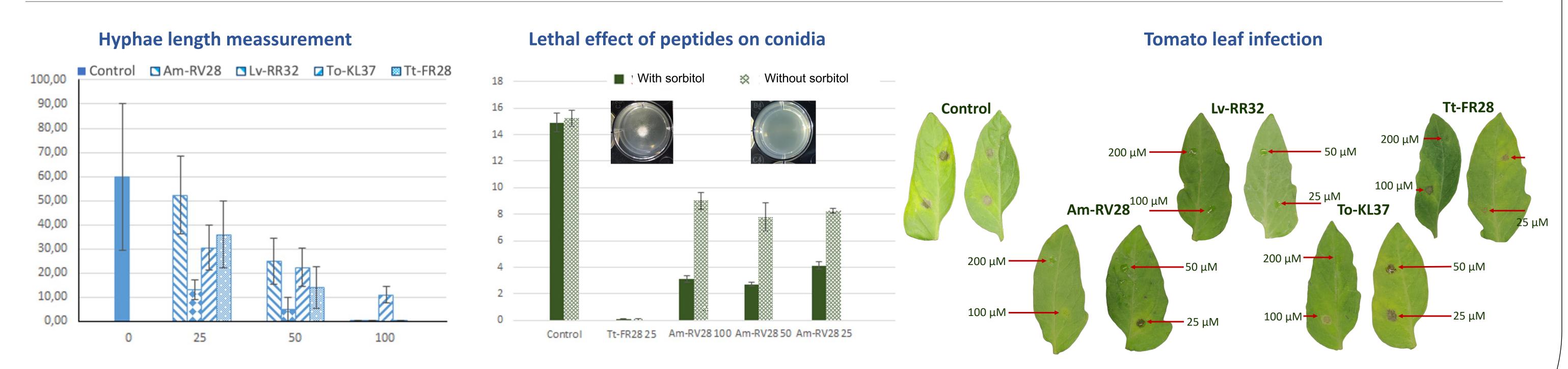

Am-RV28	RVTRWLWLLRGGLKAAGWGIRAHLNRNQ	28	3299.88	12.60	6	-0.429
Lv-RR32	RRIRIRPPRLPRPRPRPWFPPRFPIPRIPGKR	32	4035.95	13.00	12	-1.403
To-KL37	KLFGKVGNLLQKGWQKIKNIGRRIKDFFRNIRPMQEA	37	4429.30	11.60	8	-0.751
Tt-FR28	FRPPYLPRPGRRPRFPPPFPIPRIPRIP	28	3391.12	12.40	7	-0.954

3. Results


30,00


20,00

Germination of conidia


Percentage of conidia germination

10,00 50 4 hours 6 hours 8 hours

The y-axis represents the percentage of germination. The x-axis represents the peptide concentrations, namely 0 mM, 25 mM, 50 mM, and 100 mM. At a dose of 100 µM, all peptides showed complete inhibition of conidia germination. The experiments were performed in triplicate.

In vitro assays showed that all peptides completely inhibited the germination of conidia at the concentration of 100 µM. In addition, they also affected hyphal growth at concentrations of 50 and 25 µM, highlighting the activity of peptides Lv-RR32 and Am-RV28 which showed higher activity at these concentrations.

Results were in agreement with what was seen in the in vitro experiments. Peptides Lv-RR32 and

The y-axis represents the percentage of germination. The x-axis represents the peptide concentrations at µM. After 10 hours all peptides affected hyphal growth at concentrations of 50 and 25 μ M, highlighting the activity of Lv-RR32 and Am-RV28 peptides that showed higher activity at these concentrations.

The osmotic stabilizer sorbitol (1M) was used to study cell wall integrity. Sorbitol impacted on the inhibition zone of the fungus after peptide treatment.

Am-RV28 completely inhibited the infection at the concentration of 100 µM. On the other hand, the Tt-FR28 peptide reduced the infection at 100 μ M, being completely inhibited at 200 μ M. Finally, the To-KL37 peptide did not inhibit infection, although infection was lower at the maximum concentration tested (200 μ M).

4. Conclusions

The present study provides the first evidence for the inhibitory properties of cathelicidins in an in vitro environment and suggests the potential of cathelicidins as peptide inhibitors to suppress the growth of *Botrytis cinerea* in plants. The in vitro efficacy of several cathelicidins against *B. cinerea* was demonstrated. The potential efficacy of certain peptides in the range of 25 micromolar or perhaps even below is currently under investigation. Vertebrate cathelicidins have the potential to serve as a new source of alternative antifungal chemicals compared to the pesticides already in use. The results presented and the diversity of cathelicidins available provide an opportunity to explore new antifungal agents within this class of compounds.

Acknowledgements

This work was funded by project APOGEO (INTERREG-MAC Cooperation Program 2014-2020, with European Regional Development Funds-FEDER), Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI) del Gobierno de Canarias", project ProID2020010134, and Caja Canarias, Project 2019SP43.

Patricia Asensio-Calavia and Andrea Otazo-Pérez are recipients of pre-doctoral fellowships from the "Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI) del Gobierno de Canarias". We are grateful to CEAMED S.A for providing support in carrying out this research under the agreement with IPNA-CSIC.

Beatriz Gonzalez Almecija is a beneficiary of the Programa Investigo for the recruitment of young job seekers to carry out research and innovation initiatives under the EU plan "Next Generation Recovery, Transformation and Resilience" in collaboration with the Government of the Canary Islands.

DOCTORADO

CIENCIAS DE LA SALUD

Programa de Doctorado en Ciencias de la Salud Verificado ANECA, Resol 19-3-2014

ULL Universidad de La Laguna

Gobierno de Canarias Agencia Canaria de Investigación, Innovación y Sociedad de la Información

CajaCanarias Obra Social "la Caixa" FUNDACIÓN

Proyecto ProID2020010134 "Bioprospección y biotecnología en el descubrimiento de péptidos antimicrobianos contra patógenos resistente

Proyecto 2019SP43 "Nanotecnología para el tratamiento antifúngico poscosecha de la podredumbre gris (Botrytis cinerea)"

1

Interreg MAC 2014-2020

Interreg-MAC Call European Funds for Regional Development-FEDER Proyecto "Agricultura de Precisión para la Mejora de la Producción Vitícola en la Macaronesia"

50

10 hours

100