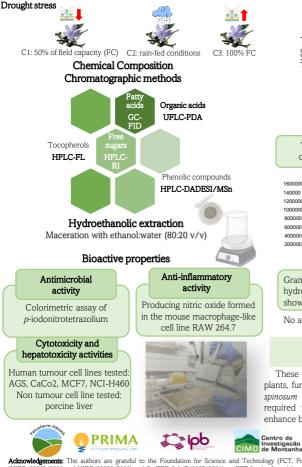
Effects of Drought Stress on the Chemical Composition and Bioactive Properties of *Cichorium spinosum* L.

Beatriz H. Paschoalinotto ^{1,2,3}; Miguel A. Prieto ³; Tânia C.S.Pires ^{1,2}; Ricardo Calhelha ^{1,2}; Nikolaos Polyzos ⁴; Spyridon A. Petropoulos ⁴; Lillian Barros ^{1,2}; Maria Inês Dias ^{1,2,*}

¹ Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;

² Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SuSTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;

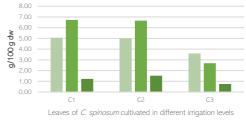
³ Grupo de Nutrición y Bromatología, Departamento de Química Analitica e dos Alimentos, Facultade de Ciência e Tecnoloxía dos Alimentos, Universidade de Vigo, Campus de Ourense, 32004 Ourense, España;


⁴ Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece.

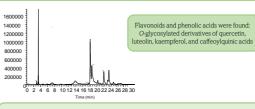
*maria.ines@ipb.pt

Introduction, Materials and Methods

Cichorium spinosum L. (spiny chicory), is one of the most wellknown wild edible plant (WEP) due to its valuable phytonutrient and macronutrient content;


In the search for sustainable agricultural systems, several studies have focused on deficit irrigation as an option for commercial cultivation of WEPs in marginal conditions.

Results


 $\gamma\text{-}tocopherol$ was detected in higher concentrations than $\alpha\text{-}tocopherol$ in the samples of C. spinosum. Therefore, the total tocopherol content was less than 0.5 g/100 g dry weight.

Oxalic acid Quinic acid Succinic acid

The sample C1 showed the highest concentration of phenolic compounds due to the accumulation of secondary metabolites

Gram-positive bacteria showed greater sensitivity to the C3 hydroethanolic extract. *Escherichia coli* (gram-negative bacteria) showed only sensitivity to the C1 and C2 hydroethanolic extract

No anti-inflammatory, hepatotoxicity and cytotoxicity (except for the AGS tumour cell line) effects were found.

Conclusions

These results emphasize the influence of water stress on the quality of plants, further underscoring the potential and significant added value of *C*. *spinosum* cultivated under marginal conditions. Additional research is required to establish the most effective cultivation methods that can enhance both yield and the quality of the plant.

Acknowledgements: The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CIMO (UIDB/00690/2020) and SuFTC (LA/P/0007/2021); to FCT for the financial support to the VALUEFARM project (PRIMA/0009/2019) - PRIMA Section 2 - Multitopic 2019; for the grant of B.H. Paschoalinotto and for the financial support think escope of the Project PRIMA Section 2 - Multitopic 2019; ALUEFARM (PRIMA/0009)/2019); L Barros, ML. Dias, R. Calhelha thank FCT. P.I., through institutional scientific employment program-contract for their contracts (CEEC Institutional). To MICINN for the Ramón y Cajal fellowship of M.A. Prieto (RYC-2017-22891) and for the Juan de la Cierva Formación contract for TC.S.P.P. (FJC20120-045405-I); This work was also funded by the General Secretariat for Research and Technology of Greece (Prima 2019-11) and PRIMA foundation under the project Valuefarm (project number 1436).