GRUPO DE REAÇÃO E ANÁLISES QUÍMICAS

C. Neves^{1,2}, Tiago Vale¹, Stephanie Morais¹, C. Soares^{1*}, C. Grosso¹, V.F. Domingues¹, M. Vieira^{2,3}, C. Delerue-Matos¹

*cds@isep.ipp.pt

 1 REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
 2 Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 400, 4200-072 Porto, Portugal

3 TBIO, Center for Translational Health and Medical Biotechnology, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto Exploring the Bioactive Potential of *Gracilaria* gracilis: An Extraction Optimization Study Using Response Surface Methodology

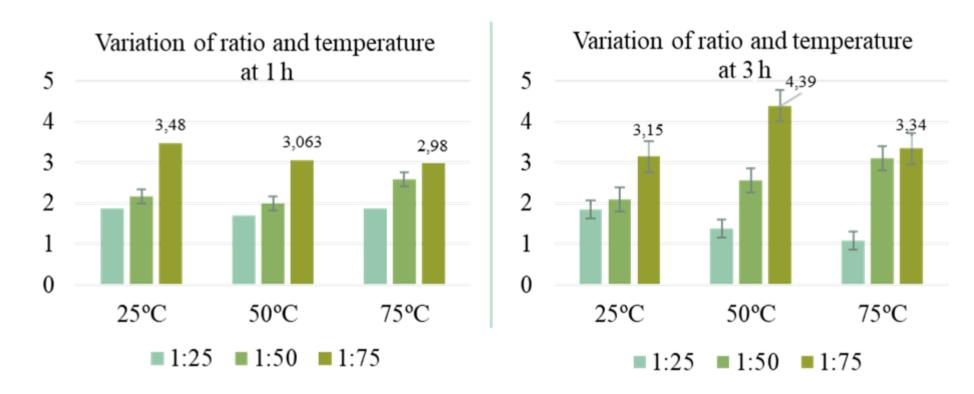
Results

The algae were subjected to extractions considering the following factors:

Table 3: ANOVA for Reduced Cubic model for the CCD for G. gracilis

Source	Sum of Squares	df	Mean Square	F-value	<i>p</i> -value	
Model	8.73	7	1.25	17.14	< 0.0001	significant
Α	0.5080	1	0.5080	6.98	0.0215	
B	4.52	1	4.52	62.11	< 0.0001	
AB	0.0017	1	0.0017	0.0227	0.8827	
A ²	0.0204	1	0.0204	0.2796	0.6066	
B ²	0.1342	1	0.1342	1.84	0.1996	
A ² B	1.26	1	1.26	17.35	0.0013	
AB ²	0.9287	1	0.9287	12.76	0.0038	
Residual	0.8734	12	0.0728			
Lack of Fit	0.7576	7	0.1082	4.67	0.0544	not significant
Pure Error	0.1158	5	0.0232			
Cor Total	9.61	19				

Sel Instituto Superior de Engenharia do Porto P.PORTO


Introduction

Algae, essential for ecosystem health, span microalgae and macroalgae (seaweeds). Their composition varies with type, season, and location, but seaweeds offer nutrition, including fiber, minerals, omega-3s, and proteins [1]. Algae also combat stress with antioxidants and are rich in diverse bioactive compounds like iodine [2]. Now, antioxidants play a vital role in food preservation by combating oxidative damage caused by free radicals [3]. Extracting these compounds is intricate, depending on factors like solvent and temperature [4]. The main objective of this study is to determine the optimal extraction conditions for Gracilaria gracilis, aiming to maximize the extraction efficiency of antioxidants, potentially providing a natural and sustainable alternative to synthetic antioxidants commonly used in the food industry.

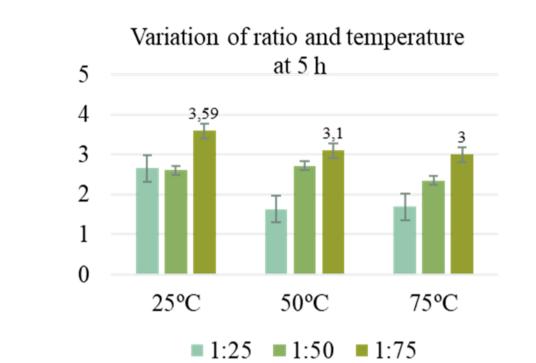
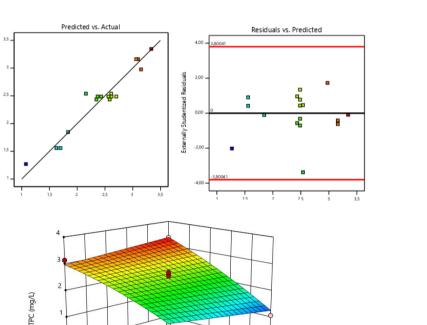
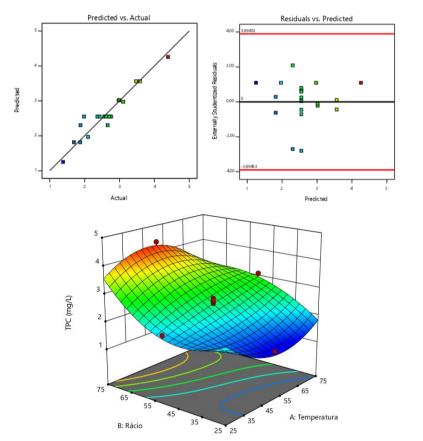


Table 1: Extraction conditions and according to minimum and maximum values.

Factor	Name	Minimum	Maximum
Α	Temperature	25	75
B	Ratio	25	75
С	Time	1	5

Graphs 1 and 2: Variation of ratio (biomass:solvent) and temperature at 1 and 3 hours for *G. gracilis*.




Table 4: Fit Statistics of ANOVA for Reduced Quadractic model in BBD for *G. gracilis*

Std. Dev.	0.1768	R ²	0.9356
Mean	2.43	Adjusted R ²	0.9141
C.V. %	7.29	Predicted R ²	0.8326
		Adeq Precision	21.637

Table 5: Fit Statistics of ANOVA for Reduced Cubic models in CCD for *G. gracilis*

Std. Dev.	0.2698	R ²	0.9091
Mean	2.61	Adjusted R ²	0.8560
C.V. %	10.32	Predicted R ²	0.6269
		Adeq Precision	17.6231

Graphs 4 and 5: Diagnostic graphs for Predicted vs Actual and Predicted vs Residual and model graph for the factor AB (temperature × ratio) of ANOVA for Reduced Quadractic model for BBD for *G*. *gracilis* Graphs 6 and 7: Diagnostic graphs for Predicted vs Actual and Predicted vs Residual and model graph for the factor AB (temperature × ratio) of ANOVA for Cubic model for CCD for *G. gracilis*

Figure 1: Gracilaria gracilis, algae under study

In this study, *G. gracilis* was selected due to its potential antioxidant properties.

Materials and Methods

Seaweed preparation

The algae from the brand Alga+ was rehydrated, dehydrated, and ground to obtain powdered samples.

Solid-Liquid Extraction

The solid-liquid extraction method was employed using deionized water as the solvent. Factors such as temperature, algal mass to solvent ratio, and extraction time were carefully controlled during extraction.

Experimental Design

The Box-Behnken and Central Composite designs

Graph 3: Variation of ratio (biomass:solvent) and temperature at 5 hours for G.gracilis.

Table 2: ANOVA for Reduced Quadractic model using the BBD for *G. gracilis*.

Source	Sum of Squares	df	Mean Square	F-value	<i>p</i> -value	
Model	5.45	4	1.36	43.57	< 0.0001	significant
Α	0.0216	1	0.0216	0.6918	0.4218	
В	5.14	1	5.14	164.25	< 0.0001	
AB	0.2233	1	0.2233	7.14	0.0203	
B ²	0.0687	1	0.0687	2.20	0.1640	
Residual	0.3752	12	0.0313			
Lack of Fit	0.3002	8	0.0375	2.00	0.2625	not significant
Pure Error	0.0750	4	0.0187			
Cor Total	5.82	16				

Table 6: Constrains of the optimal conditions for *G. gracilis*

Name	Goal	Lower Limit	Upper Limit	Lower Weight	Upper Weight	Importance
A:Temperature	is in range	25	75	1	1	3
B:Ratio	is in range	25	75	1	1	3
C:Time	is in range	1	5	1	1	3
TPC	maximize	1.383	4.39	1	1	3

Table 7 and 8: Selected optimal conditions by ANOVA for Reduced Cubic (BBD) and ANOVA for Reduced Quadractic (CCD) models, respectively, for *G. gracilis*

Number	Temperature	Ratio	Time	TPC	Desirability	
1	74.993	74.684	3.507	3.335	1.000	BDD model
Number	Temperature	Ratio	Time	TPC	Desirability	CCD model
					0.963	

Conclusions

- In conclusion, this study optimized extraction conditions to enhance antioxidant yield from *G. gracilis* algae. Results highlighted species-specific responsiveness to parameters, emphasizing tailored approaches. Notably, lower temperatures favored extraction efficiency, with peak TPC yield (4.39 mg GAE/g dw) at 50°C, 1:75 ratio, and 3-hour duration, aligning with prior cold-water extraction success.
- TPC analysis across conditions provided insights into temperature, ratio, and time effects, aiding standardized protocols for food applications. However, variable outcomes due to solvent, method, and focus require context via a comparative literature review.
- Future research will explore alternative extraction methods like MAE, PLE, and UAE, refining the process. Similar approaches will optimize extraction for diverse seaweed species.
- In summary, this study advances algae antioxidant extraction by refining conditions, contributing to sustainable, innovative bioactive integration in the food sector.

were used as statistical approaches to optimize the extraction conditions for maximum antioxidant yield. Experimental runs were conducted based on the design matrix, and the resulting data were analyzed using Design-Expert 11.0.0 software.

Total Phenolic Compounds

The total phenolic compounds (TPC) in the algae extracts were determined using the Folin-Ciocalteu colorimetric method. Results are presented in mg GAE/ g dw.

Acknowledgments

This work has been developed within the scope of "BLUE BIOECONOMY INNOVATION PACT" (Project N°. C644915664-0000026) financed by NextGenerationEU, under the incentive line "Agendas for Business Innovation" of the Recovery and Resilience Plan (PRR). This work was supported by projects REQUIMTE/LAQV—UIDB/50006/2020, UIDP/50006/2020, and financed by FCT/Ministério da Ciência, Tecnologia e Ensino Superior (MCTES) through national funds.

[1] Francavilla, M., Franchi, M., Monteleone, M., & Caroppo, C. (2013). The Red Seaweed Gracilaria gracilis as a Multi Products Source. Marine Drugs, 11(10), 3754–3776. <u>https://doi.org/10.3390/md11103754</u>
[2] Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118. <u>https://doi.org/10.4103/0973-7847.70902</u>
[3] Reboleira, J., Ganhão, R., Mendes, S., Adão, P., Andrade, M., Vilarinho, F., Sanches-Silva, A., Sousa, D., Mateus, A., & Bernardino, S. (2020). Optimization of Extraction Conditions for Gracilaria gracilis Extracts and Their Antioxidative Stability as Part of Microfiber Food Coating Additives. Molecules, 25(18), 4060. <u>https://doi.org/10.3390/molecules25184060</u>

[4] Matos, G. S., Pereira, S. G., Genisheva, Z. A., Gomes, A. M., Teixeira, J. A., & Rocha, C. M. R. (2021). Advances in Extraction Methods to Recover Added-Value Compounds from Seaweeds: Sustainability and Functionality. Foods, 10(3), 516. <u>https://doi.org/10.3390/foods10030516</u>

[5] Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. https://doi.org/10.1016/j.talanta.2008.05.019

REQUIMTE/LAQV

INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO Rua Dr. António Bernardino de Almeida, 431 • 4200-072 Porto, Portugal www.requimte.pt/laqv • www.graq.isep.ipp.pt

The 4th International Electronic Conference on Foods October 15-30, 2023 Online