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Abstract: The article focuses on utilizing apple pomace waste for a circular economy. It explores 

bioactive compounds in apple pomace, their potential uses, and emphasizes molecular docking’s 

role in understanding how these compounds act as antimicrobials and antifungals. The study high-

lights the diversity of bioactive phytochemicals, introduces molecular docking for studying their 

interactions with microbial proteins, and presents case studies demonstrating how this approach 

reveals mechanistic pathways of action. This research showcases how apple pomace can be repur-

posed for its valuable compounds and offers insights into their antimicrobial and antifungal prop-

erties through in silico techniques. 
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1. Introduction 

The expanding challenges posed by escalating environmental concerns and the bur-

geoning demand for sustainable practices have propelled the exploration of novel ap-

proaches for the valorization of agri-food wastes and by-products [1]. Among these, apple 

pomace, the residual biomass derived from apple processing industries, has garnered sig-

nificant attention for its untapped potential as a reservoir of bioactive phytochemicals [2]. 

This agri-food waste stream, which traditionally found application as animal feed or was 

relegated to disposal, has emerged as a source of diverse and valuable phytochemicals [3]. 

These compounds, arising from the rich phytochemistry of apples [4], exhibit a myriad of 

health-promoting properties [5]. Consequently, apple pomace houses an array of bioac-

tive phytochemicals, including phenolic acids, polyphenols, and triterpenoids, which 

have been linked to diverse bioactivities such as antioxidant, anti-inflammatory, and an-

timicrobial properties [6]. However, the precise molecular mechanisms that underlie these 

activities remain quasi-equivocal. 

Elucidating the interactions between bioactive compounds found in apples and the 

apple pomace and their target proteins responsible for microbial and fungal proliferation 

holds paramount significance in unraveling the intricate mechanisms governing their an-

timicrobial and antifungal activities. The bioactivity of these compounds hinges on their 

ability to selectively interfere with key processes essential for the survival and growth of 

pathogenic microorganisms and fungi. The precise details of these interactions have re-

mained elusive, impeding a comprehensive understanding of their modes of action. 

Microorganisms and fungi, particularly those implicated in infections and diseases, 

rely on an array of essential proteins to sustain their viability and proliferative capacities. 
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These proteins, often involved in critical cellular processes like cell wall synthesis, mem-

brane integrity, and enzymatic activities, present promising targets for therapeutic inter-

ventions [7,8]. The bioactive compounds found in apples and apple pomace, being rich in 

diverse phytochemicals, have the potential to interact with these essential proteins, dis-

rupting their functions and thereby impeding the survival of pathogens. 

Molecular docking, as a computational technique, offers a unique vantage point to 

explore these interactions at a molecular level. By virtually simulating the binding of bio-

active compounds to target proteins, molecular docking provides insights into the intri-

cate molecular contacts, binding orientations, and binding affinities governing their inter-

actions [9]. This enables researchers to identify the specific amino acid residues and chem-

ical moieties that play pivotal roles in the formation of stable complexes. Such information 

is invaluable not only for understanding the binding mechanisms but also for facilitating 

the rational design of new and improved antimicrobial and antifungal agents based on 

the structure of natural bioactive compounds [10]. This article is poised to shed light on 

this intricate molecular tango through the application of molecular docking, an advanced 

computational tool that provides insights into the binding affinities, interaction modes, 

and key molecular contacts within complex biological systems. 

2. Materials and Methods 

The molecular docking technique was used to predict the position and orientation of 

ligands (the bioactive compounds found in apples and the apple pomace) bound to a se-

lected list of protein receptors (targets). 

Three classes of ligands were selected by cross-referencing the literature data [11–17] 

with PubChem (https://pubchem.ncbi.nlm.nih.gov) [18]: phenolic acids (caffeic acid, gallic 

acid, ferulic acid, p-coumaric acid, chlorogenic acid, syringic acid, ellagic acid, 4-hy-

droxybenzoic acid, 3,4-dihydroxybenzoic acid and cinnamic acid), polyphenols ((+)-cate-

chin, (-)-epi-catechin, quercetin, kaempferol, rutin, myricetin, phloretin, procyanidin, and 

phlorizin), and triterpenoids (ursolic and oleanolic acids). The structure-data files (SDF 

file format) for selected ligands were obtained from PubChem [18], then tridimensional 

(3D) optimized and converted in Tripos MOL2 file format (MOL2), as required for molec-

ular docking. MarvinSketch was used for 3D optimization and generation of all ligand 

files, MarvinSketch version 23.12.0, 2023, ChemAxon (https://chemaxon.com/). 

Target selection was made by cross-referencing the literature data with The Research 

Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) [19–22]. Three 

structural files (RCSB PDB IDs) solved by X-ray crystallography were selected to perform 

three different docking runs: (1) 5TZ1 (Lanosterol 14-alpha demethylase from Candida al-

bicans—fungus) [23]; (2) 2W9H (Dihydrofolate reductase from Staphylococcus aureus—

gram-positive bacterium) [24]; and (3) 3MZF (D-alanyl-D-alanine carboxypeptidase DacA 

from Escherichia coli—gram-negative bacterium) [25]. 

Three individual molecular docking runs were executed for each identified molecu-

lar target utilizing AutoDock Vina v.1.2.0 [26]. PyRx—Python Prescription v.0.9.2 [27] was 

used as the control interface. AutoDock Vina, as part of its functionality, automatically 

computed grid maps and subsequently organized the docking outcomes in a transparent 

manner, enhancing the user experience. All molecular docking runs were conducted 

within a search space encompassing less than 27,000 Å³, a region centered around the 

binding site of the co-crystallized ligands derived from the X-ray structures of the respec-

tive molecular targets, as advocated by the developers of the software [26]. To enhance 

the precision of the docking process, the exhaustiveness parameter was configured to 100, 

a significant increase from the default exhaustiveness value of 8 in PyRx v.0.9.2. As a ref-

erence and control measure, the co-crystallized ligands associated with each identified 

molecular target were subjected to re-docking in their respective docking runs. 
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3. Results 

The summary of the three docking runs is provided concisely in Table 1, showcasing 

the binding affinities of the best docking poses from each run. A detailed graphical depic-

tion of binding patterns of the best binders in each ligand category against their molecular 

targets is provided in the Supplementary Materials (Figure S1). 

Table 1. Docking results: binding affinities of the best docking poses against selected targets. 

Ligands Targets (BA) 

Name IDs 5TZ1 2W9H 3MZF 

Phenolic acids     

Caffeic acid 689043 −6.6 −6.3 −5.4 

Gallic acid 370 −5.7 −5.6 −5.2 

Ferulic acid 445858 −6.2 −6.4 −5.4 

p-Coumaric acid 637542 −6.5 −6.2 −5.1 

Chlorogenic acid 1794427 −8.4 −8.7 −7.0 

Syringic acid 10742 −5.5 −5.7 −5.4 

Ellagic acid 5281855 −7.5 −8.7 −7.1 

4-Hydroxybenzoic acid 135 −5.5 −5.4 −4.7 

3,4-Dihydroxybenzoic acid 72 −5.8 −5.4 −5.2 

Cinnamic acid 444539 −6.6 −5.9 −5.0 

Polyphenols     

(+)-Catechin 9064 −8.3 −8.6 −6.6 

(-)-Epicatechin 72276 −8.2 −8.3 −6.6 

Quercetin 5280343 −8.5 −8.8 −6.6 

Kaempferol 5280863 −8.3 −8.7 −6.5 

Rutin 5280805 −9.5 −8.5 −7.7 

Myricetin 5281672 −7.6 −8.7 −6.6 

Phloretin 4788 −7.7 −8.0 −6.3 

Procyanidin 107876 −9.9 −8.2 −7.2 

Phlorizin 6072 −8.4 −8.8 −7.0 

Triterpenoids     

Ursolic acid 64945 −9.5 −6.1 −5.9 

Oleanolic acid 10494 −9.9 −5.2 −5.4 

Reference compounds     

Oteseconazole 77050711/VT1 −10.3 N/A N/A 

Trimethoprim 5578/TOP N/A −7.4 N/A 

Imipenem 5288621/IM2 N/A N/A −5.9 

BA: binding affinity expressed in kcal/mol; IDs: for natural bioactive compounds were used the 

PubChem Compound Identification (CID) records, while for the reference compounds were used 

both CIDs and RCSB PDB identifiers (PDB IDs); N/A: not applicable. 

4. Discussion 

The results of the molecular docking simulations reveal promising interactions be-

tween bioactive compounds from apple pomace and selected protein targets. Notably, 

several phenolic acids, polyphenols, and triterpenoids displayed strong BAs with the se-

lected protein receptors. 

Phenolic acids: Among the phenolic acids, chlorogenic acid demonstrated the highest 

binding affinity against the fungal target, while ellagic acid was the best binder against 

the gram-positive bacterial target. Both compounds exhibited identical binding affinity 

for the gram-negative bacterial target. Their strong binding affinities suggest their poten-

tial as broad-spectrum antimicrobial and antifungal agents. Caffeic acid, ferulic acid, and 
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p-coumaric acid also displayed notable BAs, indicating their potential therapeutic rele-

vance. 

Polyphenols: Procyanidin and rutin exhibited good binding affinities against the se-

lected protein receptors. Those compounds strong interactions with selected targets sug-

gest their potential as potent antimicrobial and antifungal agents. Additionally, quercetin, 

phlorizin and kaempferol showed substantial BAs across the protein targets, underscor-

ing their promising inhibitory properties. 

Triterpenoids: Ursolic acid, one of the triterpenoids investigated in this study, dis-

played impressive binding affinities, particularly against the fungal target (5TZ1). This 

finding suggests that ursolic acid may be a valuable candidate for antifungal drug devel-

opment. Oleanolic acid exhibited even better BS against the fungal target but showed var-

ying interactions with the two bacterial targets. 

Oteseconazole, a known antifungal drug, demonstrated the highest BA against its 

target (5TZ1), validating the reliability of our molecular docking approach. Trimethoprim 

and imipenem, both known antibacterial drugs, demonstrated substantial binding affini-

ties against their respective targets (2W9H and 3MZF), confirming the docking runs’ ac-

curacy. 

5. Conclusions 

Molecular docking provides valuable mechanistic insights into the interactions be-

tween these compounds and microbial proteins, aiding in the rational design of novel 

therapeutic agents and/or the formulation of functional foods for the benefit of human 

health. However, future research directions could include experimental validation of 

these in silico findings through in vitro and in vivo studies. Additionally, the identification 

of (other) specific pathways and molecular mechanisms through which these bioactive 

compounds exert their antimicrobial and antifungal effects should be pursued, enabling 

a deeper understanding of their mode of action. 

In conclusion, this study highlights the potential of repurposing apple pomace for its 

bioactive compounds and emphasizes the utility of molecular docking as a powerful tool 

for investigating the antimicrobial and antifungal mechanisms of natural products. This 

research contributes to the broader goal of sustainable resource utilization and: (1) the 

development of effective therapies against microbial infections and fungal diseases; and 

(2) the development of functional foods that can positively impact public health and well-

being. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1, Figure S1: Binding patterns of the best binders in each ligand category 

against their molecular targets. 
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