## Assessment of the physicochemical and textural properties of food hydrogels obtained using pea protein and gellan gum

<u>Adonis Hilal</u>, Anna Florowska, Tomasz Florowski, Małgorzata Wroniak

Institute of Food Science, Department of Food Technology and Assessment, Warsaw University of Life Sciences-SGGW





WARSAW UNIVERSITY OF LIFE SCIENCES



## Introduction



A material with tunable properties that can meet specific requirements for different applications in several sectors.





### References

- market? www.smartproteinproject.eu
- Natural Polymers (pp. 357-410). Elsevier. https://doi.org/10.1016/B978-0-12-816421-1.00015-X



## Food-grade hydrogel's building blocks are naturally sourced biopolymers:

## + Polysaccharides

+ Hilal, A.; Florowska, A.; Wroniak, M. Binary Hydrogels: Induction Methods and Recent Application Progress as Food Matrices for Bioactive Compounds Delivery—A Bibliometric Review. Gels 2023, 9, 68. https://doi.org/10.3390/gels90

+ Peschel, A. O., Kazemi, S., Liebichová, M., Sarraf, S. C. M., & Aschemann-Witzel, J. (2019). Consumers' associative networks of plantbased food product communications. Food Quality and Preference, 75, 145–156. https://doi.org/10.1016/j.foodqual.2019.02.015

+ EU-funded retail scanning data Nielsen. (2020). EU-funded SMART PROTEIN project -Plant-based foods in Europe: How big is the

+ Tuorila, H., & Hartmann, C. (2020). Consumer responses to novel and unfamiliar foods. Current Opinion in Food Science, 33, 1−8.

+ Zhang, H., Zhang, F., & Yuan, R. (2020). Applications of natural polymer-based hydrogels in the food industry. In Hydrogels Based on

## Introduction



## Importance of food hydrogels in food development

## The main reasons

Due to COVID-19, people are now more concerned about their health and the environment surrounding

Plant-based and hybrid foods offer a new way to ensure healthy nutrition for all while protecting our natural resources.

Plant-based ingredients might not provide all the necessary nutrients - increasing interest in fortifying the end-products.

Focus on achieving the desired appearance, texture (mouthfeel), and flavor.

✦ Hilal, A.; Florowska, A.; Wroniak, M. Binary Hydrogels: Induction Methods and Recent Application Progress as Food Matrices for Bioactive Compounds Delivery—A Bibliometric Review. Gels 2023, 9, 68. <u>https://doi.org/10.3390/gels9010068</u>

 Hilal, A.; Florowska, A.; Florowski, T.; Wroniak, M. A Comparative Evaluation of the Structural and Biomechanical Properties of Food-Grade Biopolymers as Potential Hydrogel Building Blocks. Biomedicines 2022, 10, 2106. <u>https://doi.org/10.3390/biomedicines10092106</u>

Tuorila, H., & Hartmann, C. (2020). Consumer responses to novel and unfamiliar foods. Current Opinion in Food Science, 33, 1–8. <u>https://doi.org/10.1016/j.cofs.2019.09.004</u>

 Zhang, H., Zhang, F., & Yuan, R. (2020). Applications of natural polymer-based hydrogels in the food industry. In Hydrogels Based on Natural Polymers (pp. 357–410). Elsevier. <u>https://doi.org/10.1016/B978-0-12-816421-1.00015-X</u>

The aim of this research was to evaluate the physicochemical and textural properties of food hydrogels produced using pea protein and gellan gum.

## The scope of this research included

- ♦ Obtaining pea protein-gellan hydrogels (containing pea protein (PP)) concentration 0, 10, and 12.5% and gellan gum (GG) concentration 0, 0.5 and 0.75%) using a thermo-mechanical induction technique.
- ✦ Analyzing the obtained hydrogels in terms of their volumetric gelling index, microrheology, texture, physical stability, and color parameters.





# Materials and methods

## Materials

- ✦ Pea protein NUTRALYS® F85F (PP, protein content 84%) provided by Roquette Frères (Lestrem, France),
- ✦ Gellan gum (GG, high acyl Type 900, particle size: min. 95% mesh through 80 mesh) provided by C.E. Roeper GmbH (Hamburg, Germany).



Gellan gum (GG)



## The explanation of the samples coding

| Samples code | Pea protein<br>(PP) [%] | Gellan gum<br>(GG) [%] |
|--------------|-------------------------|------------------------|
| C1           | 10                      | 0                      |
| C2           | 12.5                    | 0                      |
| C3           | 0                       | 0.5                    |
| C4           | 0                       | 0.75                   |
| H1           | 10                      | 0.5                    |
| H2           | 10                      | 0.75                   |
| H3           | 12.5                    | 0.5                    |
| H4           | 12.5                    | 0.75                   |

### 1) Volumetric gelling index (VGI)

2) Microrheological properties - Rheolaser Master device (Formulaction, L'Union, France)

3) Textural Properties - texture analyzer (TA.XT Plus, Stable Micro Mixtures, Surrey, UK)

4) Physical stability - LUMiSizer 6120-75 (L.U.M. GmbH, Berlin, Germany)

5) Color parameters in the CIE system (L\*, a\*, b\*) – Minolta CR-200 colorimeter (Minolta, Japan)

6) statistical analysis – one-way ANOVA, PCA and HCA (Statistica 13.3, TIBCO Software Inc., Palo Alto, CA, USA)

## 1) Volumetric gelling index (VGI)

◆ VGI is a parameter that expresses a gel structure capacity to develop. VGI is equivalent to 0% when the gel structure is not formed, and it is equal to 100% when the sample is entirely gelled.

Total

volume

(Vt)





### References

- pretreatment
- studv





← SLB is proportional to the viscoelastic properties of the studied sample. SLB is related to the following functional characteristics: adhesion, shape stability, texture, spreadability, and physical stability.

| / | Statistics ANOVA, η2 [-] |            |  |  |  |
|---|--------------------------|------------|--|--|--|
|   |                          | SLB [nm-2] |  |  |  |
|   | [PP]                     | 0.692      |  |  |  |
|   | [GG]                     | 0.587      |  |  |  |
|   | [PP]·[GG]                | 0.716      |  |  |  |



+ Florowska, A., Hilal, A., Florowski, T., Mrozek, P., & Wroniak, M. (2022). Sodium Alginate and Chitosan as Components Modifying the Properties of Inulin Hydrogels. *Gels*, 8(1), 63. + Qayum, A., Hussain, M., Li, M., Li, J., Shi, R., Li, T., Anwar, A., Ahmed, Z., Hou, J., & Jiang, Z. (2021). Gelling, microstructure and water-holding properties of alpha-lactalbumin emulsion gel: Impact of combined ultrasound and laccase cross-linkina. Food Hvdrocolloids. 110. + Hafner, J., Oelschlaeger, C., & Willenbacher, N. (2020). Microrheology imaging of fiber suspensions – a case

for lyophilized collagen I in HCl solutions. Soft Matter, 16(39), 9014–9027.

+ Szymańska, I., Żbikowska, A., & Kowalska, M. (2020). Physical stability of model emulsions based on ethyl cellulose oleogels. International Agrophysics, 34(3), 289-300. https://doi.org/10.31545/intagr/122333

## 3) Textural Properties - texture analyzer

✦ The strength parameter represents the amount of force required to penetrate the structure of the studied hydrogel. A high strength value suggest that the structure of the hydrogel is compact.





| Statistics / | ANOVA, η2 [-]          |
|--------------|------------------------|
|              | Spreadability<br>[N·s] |
| [PP]         | ns                     |
| [GG]         | 0.983                  |
| [PP]·[GG]    | ns                     |

✦ The spreadability parameter is related to the ease with which a sample (hydrogel), can be applied in a thin, even layer. A spreadability high value indicates that the hydrogel is less spreadable.



### References





| b<br>Statistics ANOVA, η2 [-]<br>Strength<br>[N]<br>[PP] ns<br>[GG] 0.949<br>[PP]·[GG] 0.969 |   |  |        |         |                 |     |
|----------------------------------------------------------------------------------------------|---|--|--------|---------|-----------------|-----|
| [PP] ns<br>[GG] 0.949<br>[PP]·[GG] 0.969                                                     | h |  | Statis | tics AN | <b>ΟVA</b> , η2 | [-] |
| [PP] ns<br>[GG] 0.949<br>[PP]·[GG] 0.969                                                     | Ť |  |        |         |                 | :h  |
| [PP]·[GG] 0.969                                                                              |   |  |        |         | ns              |     |
|                                                                                              |   |  |        |         |                 |     |
|                                                                                              |   |  | [PP]·  | [GG]    | 0.969           |     |
|                                                                                              |   |  | a      | a       | a               | a   |

### 4) Physical stability - LUMiSizer



+ Florowska, A., Hilal, A., Florowski, T., Mrozek, P., & Wroniak, M. (2022). Sodium Alginate and Chitosan as Components Modifying the Properties of Inulin Hydrogels. *Gels*, 8(1), 63.

+ Florowska, A., Hilal, A., Florowski, T., & Wroniak, M. (2020). Addition of Selected Plant-Derived Proteins as Modifiers of Inulin Hydrogels Properties. Foods, 9(7), 845.

+ Mousavi, S. M. R., Rafe, A., & Yeganehzad, S. (2019). Textural, mechanical, and microstructural properties of restructured pimiento alginate-guar gels. Journal of Texture Studies, 50(2), 155–164.

+ Qayum, A., Hussain, M., Li, M., Li, J., Shi, R., Li, T., Anwar, A., Ahmed, Z., Hou, J., & Jiang, Z. (2021). Gelling, microstructure and water-holding properties of alpha-lactalbumin emulsion gel: Impact of combined ultrasound pretreatment and laccase cross-linking. Food Hydrocolloids, 110. https://doi.org/10.1016/j.foodhyd.2020.106122

## 5) Color parameters in the CIE system (L\*, a\*, b\*) – Minolta CR-200 colorimeter

| Samples | H4    | НЗ    | H2                                                                                                                                                                                                                | H1    | C4    | С3    | C2                       |                    | C1                 |
|---------|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|--------------------------|--------------------|--------------------|
| C1      | 2.13  | 1.57  | 1.06                                                                                                                                                                                                              | 3.98  | 59.14 | 60.18 | 1.81                     | (                  | 0.00               |
| C2      | 2.58  | 2.88  | 2.85                                                                                                                                                                                                              | 5.73  | 60.44 | 61.47 | 0.00                     |                    |                    |
| С3      | 59.12 | 58.70 | 59.31                                                                                                                                                                                                             | 58.23 | 1.13  | 0.00  |                          |                    |                    |
| C4      | 58.09 | 57.67 | 58.27                                                                                                                                                                                                             | 57.18 | 0.00  |       | Statistics ANOVA, η2 [-] |                    |                    |
| H1      | 5.28  | 3.98  | 3.15                                                                                                                                                                                                              | 0.00  |       |       | [PP]                     | <b>WI</b><br>0.644 | <b>YI</b><br>0.891 |
| H2      | 2.28  | 1.22  | 0.00                                                                                                                                                                                                              |       | 1     |       | [GG]<br>PP]·[GG]         | ns                 | 0.757              |
| Н3      | 1.36  | 0.00  |                                                                                                                                                                                                                   | 1     |       |       |                          | 0.686              | 0.762              |
| H4      | 0.00  |       | $\Delta \mathbf{E} = \sqrt{(L_{s1}^* - L_{s2}^*)^2 + (a_{s1}^* - a_{s2}^*)^2 + (b_{s1}^* - b_{s2}^*)^2}, \text{ where:} \\ L_{s1;} a_{s1;} b_{s1} \text{ and } L_{s2;} a_{s2;} b_{s2} \text{ refer to the color}$ |       |       |       |                          |                    |                    |



- References

determine the whiteness and yellowness of the tained samples, **the whiteness index (WI)** id yellowness index (YI) of each combination as calculated:

 $100 - \sqrt{(100 - L^*)^2 + a^{*2} + b^{*2}},$ 

142.86  $\times \left(\frac{b^*}{I^*}\right)$ , where: L\*, a\*, and b\* refer to the color parameters of analyzed sample. ∎WI ♦ YI



◆ Sobol, Z., Jakubowski, T., & Nawara, P. (2020). Application of the CIE L\*a\*b\* method for the evaluation of the color of fried products from potato tubers exposed to C band ultraviolet light. Sustainability (Switzerland), 12(8). https://doi.org/10.3390/S + Florowska, A., Florowski, T., Sokołowska, B., Adamczak, L., & Szymańska, I. (2021). Effects of Pressure Level and Time Treatment of High Hydrostatic Pressure (HHP) on Inulin Gelation and Properties of Obtained Hydrogels. Foods, 10(11), 2514. https://doi.org/10.3390/foods10112514 ◆ Tang, C., Zhang, W., Zou, Y., Xing, L., Zheng, H., Xu, X., & Zhou, G. (2017). Influence of RosAprotein adducts formation on myofibrillar protein gelation properties under oxidative stress. Food Hydrocolloids, 67, 197-205. https://doi.org/10.1016/j.foodhyd.2017.01.006

5) statistical analysis – Principal component analysis (PCA) and Hierarchal cluster analysis HCA (Statistica 13.3, TIBCO Software Inc., Palo Alto, CA, USA)





# Conclusion



The aim of this research was to evaluate the physicochemical and textural properties of food hydrogels produced using pea protein and gellan gum

- By varying the concentrations of pea protein and gellan gum, the physicochemical and textural properties of the resulting binary hydrogels can be controlled.
- In terms of the analyzed properties, the most optimal variant was the one containing 12.5% pea protein and 0.75% gellan gum.
- Depending on the properties that the final food product must exhibit, a binary protein-polysaccharide hydrogel can be used as a matrix to contribute to that product's physicochemical and textural properties.







## **Contact Information**

Adonis Hilal, WULS PhD Candidate

Email: <u>adonis\_hilal@sggw.edu.pl</u>

LinkedIn: <a href="http://www.linkedin.com/in/adonis-h-a85398161">www.linkedin.com/in/adonis-h-a85398161</a>





Warsaw University of Life Sciences 166 Nowoursynowska St., 02-787 Warsaw

www.sggw.edu.pl