Effect of a Fear on a Diseased Prey-Predator Model with Predator Harvesting †

N. Raja 1,*,‡,§, S. Muthukumar 2,‡,§, M. Siva Pradeep 2,‡,§ and N. P. Deepak 2,‡,§

Abstract: In this paper, we examine the impact of fear in an eco-epidemiological model with predator harvesting and infection in a prey population. The effect of fear on susceptible prey due to infected prey was discussed. A Predator consumes susceptible and infected prey at various rates in the form of a Holling type II Functional response. To examine the positivity and the boundedness of the solutions. The stability of all biologically feasible equilibrium points and the Hopf-bifurcation of the endemic equilibrium of the system are derived. A numerical simulation is performed to support our analytical findings.

Keywords: bifurcation; stability; refuge; predator harvesting; fear

1. Introduction

In prey predator models are in two types one is an ecological model and another one is an epidemiological model. In ecological model interactions between organisms, including humans, and their physical environment. In epidemiological models are used to study diseases in animals and humans. Also, the above study of ecology and epidemiology is called eco-epidemiology. In eco-epidemiology, we study prey-predator models with disease dynamics. Predator-prey interactions have been included in the Lotka-Volterra model for a very long time, see [1–3]. In a similar vein, after the seminal work of Kermack and McKendrick [4]. The interaction of the susceptible, infected, and recovered has been an interesting topic of study. The original predator-prey model was developed in large part by Vito Volterra and Alfred James Lotka. Ecology models and epidemiology models are the two basic categories into which mathematical models are often divided. In ecological models studying the interactions between populations of a particular community are studied. Epidemiology models mean studying the spread of diseases between animals and humans. It is increasingly crucial to do research on the dynamics of illness within ecological systems. On the one hand, several studies of prey-predator dynamics have been conducted in recent decades, taking into account the impact of a range of biological characteristics in [5]. Many mathematical models have been created and investigated in the field of epidemiology, taking into consideration various incidence rates and illnesses [6,7]. Ecology models and epidemiology models are the two basic categories into which mathematical models are often divided. There are three different forms of harvesting: constant, proportional to density, nonlinear, and others. All of these have been proposed and investigated. There have been several suggestions harvesting methods, of research and including harvesting continuously and depends on density in proportional harvesting.
This piece is structured as follows: The prey-predator system’s past is described as Section 1. In Section 2, the mathematical formulation is presented. The existence of equilibrium points is described in Section 3. Local stability analyses in Section 4. The Hope-Bifurcation Analysis is found in Section 5. Results are presented numerically in Section 6. Finally, this paper concludes with a few observations about the suggested system in Section 7.

2. Model Formation

The system of Equation is:

\[
\begin{align*}
\frac{dX}{dt} &= \frac{r_1X}{1+FY} (1 - \frac{X+Y}{K}) - AX - \frac{AXZ}{a+X}, \\
\frac{dY}{dt} &= AYX - d_1Y - \frac{bYZ}{a+Y}, \\
\frac{dZ}{dt} &= -d_2Z + \frac{c_1YZ}{a+Y} + \frac{c_1ZX}{a+X} - HEY.
\end{align*}
\] (1)

Then the system change into the non-dimensional .
Here, \(x = \frac{X}{K}, y = \frac{Y}{K}, z = \frac{Z}{K}\).
Now the system becomes,

\[
\begin{align*}
\frac{dx}{dt} &= \frac{rx(1-x-y)}{1+fy} - x - \frac{xy}{a+x}, \\
\frac{dy}{dt} &= yx - dy - \frac{byz}{a+y}, \\
\frac{dz}{dt} &= -dz + \frac{cbyz}{a+y} + \frac{c_1yz}{a+x} - hy
\end{align*}
\] (2)

here the conditions are,

\[
r = \frac{r_1}{\lambda K}, a = \frac{a_1}{\lambda K}, h = \frac{HE}{\lambda K}, d = \frac{d_1}{\lambda K}, \theta = \frac{b_1}{\lambda K}, a = \frac{a_1}{\lambda K}, \delta = \frac{d_2}{\lambda K}, f = \frac{F}{K}
\]

Assuming the initial values are not negative \(x(0) \geq 0, y(0) \geq 0, \) and \(z(0) \geq 0\) in

Table 1. Table provides detailed biological meanings for the parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Biological Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Susceptible Prey</td>
</tr>
<tr>
<td>Y</td>
<td>Infected Prey</td>
</tr>
<tr>
<td>Z</td>
<td>Predator</td>
</tr>
<tr>
<td>r</td>
<td>The intrinsic growth rate of prey</td>
</tr>
<tr>
<td>K</td>
<td>The Carrying capacity of the environment</td>
</tr>
<tr>
<td>a_1</td>
<td>The half-saturation constant</td>
</tr>
<tr>
<td>b_1</td>
<td>Predation rate of Susceptible prey</td>
</tr>
<tr>
<td>c</td>
<td>Conversion coefficient from the prey to predator</td>
</tr>
<tr>
<td>d_1</td>
<td>The death rate of infected prey</td>
</tr>
<tr>
<td>d_2</td>
<td>The death rate of predator population</td>
</tr>
<tr>
<td>\lambda</td>
<td>The infection rate</td>
</tr>
<tr>
<td>H</td>
<td>The catchability coefficient of the predator</td>
</tr>
<tr>
<td>E</td>
<td>Harvesting effort</td>
</tr>
</tbody>
</table>

3. The Presence of Equilibrium Points

- The trivial equilibrium point \(E_0(0,0,0)\).
- The diseased prey free and predator-free equilibrium point \(E_1(1,0,0)\).
- The predator-free equilibrium point \(E_2(x,y,0)\), where

\[
\bar{x} = d, \bar{y} = \frac{r(1-d)}{r+1},
\]

- The infection-free equilibrium point \(E_3(\bar{x},0,\bar{z})\), where

\[
\bar{x} = \frac{a(\delta+h)}{ca-\delta-h}, \text{ and } \bar{z} = \frac{rax((ca-\delta-h)-a(\delta+h))}{(ca-\delta-h)^2}.
\]
• The interior equilibrium point $E^*(x^*, y^*, z^*)$, where

\[
y^* = \frac{a(d + h) + ((\delta + h - \alpha)x^*)}{(\alpha s^* + (\delta + h)(a + s^*))}, \\
z^* = \frac{\alpha(s^* - d)(a + s^*)}{(\alpha s^* + (\delta - \alpha)(a + s^*))},
\]

and s^* is the unique positive root of the quadratic equation $A^2 + BS + C = 0$, with $A = r(c\theta - (\delta + h))$, $B = (c\theta - (\delta + h))(r + ar) - car + a(\delta + h)((\delta + h) - ca)r$, $C = -a((r(c\theta - (\delta + h) + (cad - a(\delta + h)(1 + r))$.

4. Analyses of Local Stability

Now, we want to calculate the Jacobian matrix for local stability analysis around different equilibrium points. The Jacobian matrix at an arbitrary point (x, y, z) is given by

\[
J(E) = \begin{pmatrix} w_{11} & w_{12} & w_{13} \\
w_{21} & w_{22} & w_{23} \\
w_{31} & w_{32} & w_{33} \end{pmatrix}
\]

where,

\[
w_{11} = \frac{r(1 - 2x)}{1 + fy} - y\frac{r}{1 + fy} + 1 - \frac{\alpha az}{\alpha + x}w_{12} = -x\left(\frac{r}{1 + fy} + 1\right), w_{21} = y \\
w_{13} = -rfy(1 - x - y)(1 + fy)^2 - \frac{\alpha x}{\alpha + x}, w_{22} = x - d - \frac{a\theta z}{(a + y)^2}, w_{23} = -\theta y \\
w_{31} = \frac{\alpha cz}{(a + x)^2}, w_{32} = \frac{ac\theta x}{(a + y)^2}, w_{33} = -\delta + \frac{c\theta y}{a + y} + \frac{acx}{a + x}.
\]

Theorem 1. The trivial equilibrium point $E_0(0, 0, 0)$ is always unstable.

Proof. Now, the corresponding Jacobian matrix $J(E_0)$ at $E_0(0, 0, 0)$ is given by

\[
J(E_0) = \begin{pmatrix} r & 0 & 0 \\
0 & -d & 0 \\
0 & 0 & -\delta - h \end{pmatrix}
\]

The corresponding eigenvalues are $r, -d, -\delta - h$. The one of the eigenvalue is positive. So, the trivial equilibrium point is always unstable. □

Theorem 2. The diseased prey free and predator-free equilibrium point $E_1(1, 0, 0)$ is unstable.

Proof. The corresponding Jacobian matrix $J(E_1)$ at $E_1(1, 0, 0)$ is given by

\[
J(E_1) = \begin{pmatrix} -r & -(r + 1) & -\theta \\
0 & -d + 1 & 0 \\
0 & 0 & -(\delta + h) + \frac{ca}{a + 1} \end{pmatrix}
\]

The corresponding eigenvalues are $\lambda_1 = -r, \lambda_2 = -d + 1, \lambda_3 = -(\delta + h) + \frac{ca}{a + 1}$. Hence, $E_1(1, 0, 0)$ is unstable due to numerical simulations. □

Theorem 3. The predator-free equilibrium point $E_2(\bar{x}, \bar{y}, 0)$ is locally asymptotically stable if $(\delta + h) > \frac{ca}{\alpha + \delta} + \frac{cd\theta}{\alpha + 1}$.

Proof. The corresponding Jacobian matrix $J(E_2)$ at $E_2(\bar{x}, \bar{y}, 0)$ is given by

\[
J(E_2) = \begin{pmatrix} f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33} \end{pmatrix}
\]
where,
\[f_{11} = -rd, f_{12} = (-1 - r)x, f_{13} = -rfx(1 - x - y) - \frac{a\dot{x}}{a + x},\]
\[f_{21} = y, f_{22} = 0, f_{23} = -\frac{\theta y}{a + y}, f_{31} = 0, f_{32} = 0, f_{33} = \frac{ca\dot{x}}{a + x} - \delta + \frac{c\theta y}{a + y} - h.\]

The cubic characteristic equation of \(J(E_2)\) is \(\lambda^3 + LA^2 + MA + N = 0\), where, \(L = -f_{11} - f_{33}, M = -f_{21}f_{12} + f_{33}f_{11}, N = f_{12}f_{21}f_{33}\). If \(L > 0, N > 0\), and \(LM - N > 0\),

According to the criterion of Routh-Hurwitz, the negative real parts are the root of the above characteristic equation if and only if \(L, N\) and \(LM - N\) are positive. Hence, the \(E_2\) is locally asymptotically stable.

Theorem 4. The infection-free equilibrium point \(E_3(\hat{s}, 0, \hat{\rho})\) is locally asymptotically stable if \(\frac{\alpha(\delta + h)}{\alpha - \delta - h} - \frac{\theta \hat{\rho}}{\alpha} < d\)

Proof.
\[J(E_3) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}\]
\[a_{11} = r - \frac{2ar(\delta + h)}{ca - \delta - h} - \frac{(ca - \delta - h)^2\rho}{ac\alpha^2}, a_{12} = -\frac{a(1 + r)(\delta + h)}{ca - \delta - h},\]
\[a_{13} = \frac{(\delta + h)}{c}, a_{21} = 0, a_{22} = -d + \frac{a(\delta + h)}{ca - \delta - h} - \frac{\theta \hat{\rho}}{\alpha},\]
\[a_{31} = \frac{(ca - \delta - h)^2\rho}{ac\alpha}, a_{32} = \frac{c\theta \hat{\rho}}{\alpha}, a_{33} = 0.\]

The cubic characteristic equation of \(J(E_3)\) is \(\lambda^3 + LA^2 + MA + N = 0\), where, \(L = -a_{11} - a_{33}, M = -a_{21}a_{12} + a_{33}a_{11}, N = a_{12}a_{21}a_{33}\). If \(L > 0, N > 0\), and \(LM - N > 0\),

According to the criterion of Routh-Hurwitz, the negative real parts are the root of the above characteristic equation if and only if \(L, N\) and \(LM - N\) are positive. Hence, the \(E_3\) is locally asymptotically stable.

Theorem 5. The interior equilibrium point \(E^*(x^*, y^*, z^*)\) is locally asymptotically stable if \(L > 0, N > 0\), and \(LM - N > 0\)

Proof. The corresponding Jacobian matrix at \(E^*(s^*, i^*, p^*)\) is given by
\[J(E^*) = \begin{pmatrix} l_{11} & l_{12} & l_{13} \\ l_{21} & l_{22} & l_{23} \\ l_{31} & l_{32} & l_{33} \end{pmatrix},\]
where,
\[l_{11} = \frac{-x^*(-r + x + a + (1 + r)y^* + 2rx^*)}{a + x^*}, l_{12} = -x^*(r + 1), l_{13} = -\frac{ax^*}{a + x^*},\]
\[l_{21} = y^*, l_{22} = \frac{\theta y^2}{(a + y)^2}, l_{23} = -\frac{\theta y^*}{(a + y)^2}, l_{31} = \frac{acz^*}{(a + x^*)^2}, l_{32} = \frac{acz^*}{(a + x^*)^2}, l_{33} = 0.\]

The cubic characteristic equation of \(J(E^*)\) is \(\lambda^3 + LA^2 + MA + N = 0\). Here \(L = -l_{11} - l_{33}, M = -l_{21}l_{12} + l_{22}l_{11} - l_{13}l_{31} + l_{23}l_{32}, N = l_{13}(-l_{22}l_{31} + l_{21}l_{32}) + l_{23}(l_{12}l_{31} - l_{11}l_{32}).\) If \(L > 0, N > 0\), and \(LM - N > 0\),

According to the criterion of Routh-Hurwitz, the negative real parts are the root of the above characteristic equation if and only if \(L, N\) and \(LM - N\) are positive. Hence, the interior equilibrium \(E^*\) is locally asymptotically stable.
5. Hopf-Bifurcation Analysis

Theorem 6. If the critical value for the bifurcation parameter \(q_1\) is exceeded, the model (2) experiences the Hopf-bifurcation. The existence of the following Hopf-bifurcation criteria at \(q_1 = q_1^*\), \(A_1(q_1^*)A(q_1^*) - A_3(q_1^*) = 0\).

Proof. For \(h_1 = q_1^*\),

\[
(\lambda^2(q_1^*) + A_2(q_1^*)) (\lambda(q_1^*) + A_1(q_1^*)) = 0. \tag{3}
\]

\[\implies \pm i \sqrt{A_2(q_1^*)} \text{ and } -A_1(q_1^*) \text{ be the zeros of the above equation. The following transversality requirement must be satisfied in order to achieve the Hopf-bifurcation at } q_1 = q_1^*. \]

\[
\frac{d}{dq_1} (\text{Re} (\lambda(q_1^*))) \neq 0.
\]

The generic roots of the aforementioned equation are (3) for all \(q_1\).

\[
\lambda_1 = r(q_1) + is(q_1), \\
\lambda_2 = r(q_1) - is(q_1), \\
\lambda_3 = -A_1(q_1).
\]

Now, we examine the situation. \[
\frac{d}{dq_1} (\text{Re} (\lambda(q_1^*))) \neq 0.
\]

Let \(\lambda_1 = r(q_1) + is(q_1)\) in the (3), we get

\[
A(q_1) + iB(q_1) = 0.
\]

where,

\[
A(q_1) = r^3(q_1) + r^2(q_1)A_1(q_1) - 3r(q_1)s^2(q_1) - s^2(q_1)A_1 V + A_2(q_1)r(q_1) + A_1(q_1)A_2(q_1), \\
B(q_1) = A_2(q_1)s(q_1) + 2r(q_1) s(q_1) A_1(q_1) + 3r^2(q_1) s(q_1) + s^3(q_1).
\]

\[
\frac{dA}{dq_1} = \zeta_1(q_1)r'(q_1) - \zeta_2(q_1)s'(q_1) + \zeta_3(q_1) = 0, \tag{4}
\]

\[
\frac{dB}{dq_1} = \zeta_2(q_1)r'(q_1) + \zeta_1(q_1)s'(q_1) + \zeta_4(q_1) = 0, \tag{5}
\]

where,

\[
\zeta_1 = 3r^2(q_1) + 2r(q_1) A_1(q_1) - 3s^2(q_1) + A_2(q_1), \\
\zeta_2 = 6r(q_1)s(q_1) + 2s(q_1)a_1(q_1), \\
\zeta_3 = r^2(q_1) A_1'(q_1) + s^2(q_1)A_1'(q_1) + A_2'(q_1)r(q_1), \\
\zeta_4 = A_2(q_1)s(q_1) + 2r(q_1)s(q_1) A_1(q_1).
\]

On multiplying (4) by \(\zeta_1(q_1)\) and (5) by \(\zeta_2(q_1)\) respectively

\[
r(q_1)' = -\frac{\zeta_1(q_1)\zeta_3(q_1) + \zeta_2(q_1)\zeta_4(q_1)}{\zeta_1^2(q_1) + \zeta_2^2(q_1)}. \tag{6}
\]
Substituting \(r(q_1) = 0 \) and \(s(q_1) = \sqrt{A_2(q_1)} \) at \(q_1 = q_1^* \) on \(\zeta_1(q_1), \zeta_2(q_1), \zeta_3(q_1), \) and \(\zeta_4(q_1), \) we obtain

\[
\begin{align*}
\zeta_1(q_1^*) &= -2A_2(q_1^*), \\
\zeta_2(q_1^*) &= 2A_1(q_1^*) \sqrt{A_2(q_1^*)}, \\
\zeta_3(q_1^*) &= A_3'(q_1^*) - A_2(q_1^*)A_1'(q_1^*), \\
\zeta_4(q_1^*) &= A_2'(q_1^*) \sqrt{A_2q_1^*}.
\end{align*}
\]

The Equation (6), implies

\[
r'(q_1^*) = \frac{A_3'(q_1^*) - (A_1(q_1^*)A_2(q_1^*))}{2(A_2(q_1^*) + A_2'(q_1^*))},
\]

if \(A_3'(q_1^*) - (A_1(q_1^*)A_2(q_1^*)) \neq 0 \implies \frac{d}{dq_1} \left(\Re(\lambda(q_1^*)) \right) \neq 0, \) and \(\lambda_3(q_1^*) = -A_1(q_1^*) \neq 0. \)

6. Numerical Simulations

In this section, several numerical simulations of the system (2) are performed in order to verify the theoretical findings. In the present study, the rate of harvesting \((h) \), predation rate \((\alpha) \) are the key parameters, which will be taken as control parameters. The MATLAB software programme is used to carry out the numerical simulation for the provided set of parameter values.

Effect of Varying the Harvesting Rate \(h \)

For the given parametric values as in Table 2, with \(\alpha = 0.2 \) the without predator equilibrium point \(E_2 \) and the endemic equilibrium point \(E^* \) exists for \(0.1 < h < 0.32. \)

![Figure 1](image_url)

Figure 1. The population concentrations Predator is follows for the parametric values shown in the table where \(h = 0.01, 0.08, 0.2, 0.3. \) From (a–c), it can be observed that an increase in the harvesting rate of susceptible prey leads to a decrease in susceptible prey and predator population whereas an increase in infected prey population.
Table 2

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Indicative Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>Variable</td>
</tr>
<tr>
<td>α</td>
<td>Variable</td>
</tr>
<tr>
<td>h</td>
<td>0.1</td>
</tr>
<tr>
<td>a</td>
<td>0.2</td>
</tr>
<tr>
<td>d</td>
<td>0.6</td>
</tr>
<tr>
<td>r</td>
<td>0.3</td>
</tr>
<tr>
<td>δ</td>
<td>0.4</td>
</tr>
<tr>
<td>c</td>
<td>0.5</td>
</tr>
<tr>
<td>θ</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Tables may have a footer.

7. Conclusions

In this study, we investigated the three-species food web model in eco-epidemiological model with predator harvesting. The local stability is assigned to each biologically feasible equilibrium point of the system. Harvesting rate (h) is used as a control parameter. According to the analytical and numerical findings, the harvesting rate has a major impact on the population. Furthermore, increasing the susceptible prey harvesting rate leads to a decrease in susceptible prey and predator population whereas an increase in infected prey population. If we increase the rate of harvesting in predator populations, the system loses its stability. Also, as we increase the level of harvesting, the system loses its stability and becomes unstable. This study shows the complex behavior of the proposed model.

Conflicts of Interest: The authors declare no conflict of interest.

References

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.