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Abstract: This study aims to identify the optimum regression techniques for downscaling among 

ten commonly used methods in climatology, including SVR, LinearSVR, LASSO, LASSOCV, Elastic 

Net, Bayesian Ridge, RandomForestRegressor, AdaBoost Regressor, KNeighbors Regressor, and 

XGBRegressor. for Köppen climate classification system, including A (tropical), B (dry), C 

(temperate), and D (continental) a synoptic station data had been collected furthermore for 

downscaling purpose General Circulation Model (GCM)  had been utilized. Additionally, to 

enhance the performance of downscaling accuracy, Mutual Information (MI) as feature selection 

was employed. The downscaling performance was evaluated using the Coefficient of Determination 

(DC) and Root Mean Squared Error (RMSE). results indicate that SVR had superior performance in 

tropical and dry climates. and, LassoCV with RandomForestRegressor had better results in 

temperate and continental climates. 

Keywords: Downscaling; Regression techniques; Köppen climate classification; Mutual Information 

(MI) 

 

1. Introduction 

In recent years, downscaling techniques have emerged as practical methods in nu-

merous fields, including climatology trend simulation [1, 2]. Therefore, identifying the 

optimal regression technique is critical for assessing, simulating, and predicting climate 

patterns. General Circulation Models (GCMs) play a crucial role as indispensable tools in 

the investigation of climate change and its associated consequences. Downscaling meth-

ods are crucial in improving the effectiveness of  GCM impact models as the temporal lim-

itations. Moreover, the outcomes of GCMs generated at lower spatial resolutions are not 

directly applicable to regional climate investigations. Therefore, it is necessary to employ 

appropriate downscaling approaches to convert GCM outputs into more refined local cli-

matic data [3]. Furthermore, for several studies to identify the most relevant features or 

variables for a predictive model Mutual information (MI) has been utilized which in-

creases the model's accuracy [4, 5]. 

The Köppen climate classification system, developed by Wladimir Köppen and later 

improved by Rudolf Geiger, is a widely utilized method for categorizing global climates 

based on temperature and precipitation patterns. Choosing the optimum regression 

model for Each Climate is challenging due to it non-linear nature of climate patterns. This 

study aims to utilize ten machine learning methods including SVR, LinearSVR, LASSO, 

LASSOCV, Elastic Net, Bayesian Ridge, Random-ForestRegressor, AdaBoost Regressor, 

KNeighbors Regressor, and XGBRegressor.  for each koppen climate including; A (trop-

ical), B (dry), C (temperate), and D (continental) to downscale and simulate the best ma-

chine learning method  for temperature among utilized methods. To increase the accuracy 

of this study MI feature selection was utilized as predictor screening. 
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2. Methods and Materials 

2.1. Study area and data set 

The cities investigated represent four main climate types: A (tropical), B (dry), C 

(temperate), and D (continental). Figure 1 shows the study area The initial city under scru-

tiny is Tabriz, situated in the northwestern region of Iran. Tabriz experiences a cold semi-

arid climate (classified as B). Its geographical coordinates are 38° 5' N latitude and 46° 16' 

E longitude. Moving on, Miami, a coastal city located in southern Florida, United States 

represents a tropical monsoon climate (classified as A). Miami's geographical coordinates 

are 25° 45' N latitude, and 80° 11' W longitude. Edmonton, exemplifies a humid continen-

tal climate (classified as D). Edmonton's geographical coordinates are 53° 32' N latitude, 

and 113° 29' W longitude. Lastly, Madrid, situated in the heart of Spain, represents a Med-

iterranean climate (classified as C). Madrid's geographical coordinates are 40° 25' N lati-

tude, 3° 42' W longitude. 

2.2. data 

Monthly temperature data from Tabriz Airport, Miami Airport, Madrid Cuatrorien-

tos, and Edmonton Saskatchewan stations were collected for the period spanning 1980 to 

2014. These temperature records were utilized as part of the study. Additionally, GCMs 

by Can-ESM5 were collected from www.canada.ca. It is important to mention that predic-

tors were. The grid employed in the analysis had a consistent longitudinal resolution of 

2.8125° and a nearly uniform latitudinal resolution of 2.8125°. 

 

Fig. 1. The location of the study area classified by climate types. 

2.3. Support vector regression (SVR) 

The Support Vector regression is a machine learning technique based on support vec-

tor machine(SVM), The primary objective of this algorithm is to construct an optimized 

function, denoted as f(x) that effectively captures the nonlinear relationship between a 

subset of training data points. The aim is to mitigate all errors that are smaller than a 

specified threshold [6]. 

2.4. Lasso Algorithm 

The Least Absolute Shrinkage and Selection Operator (LASSO) is a regularization 

method that serves as an alternative to ordinary least squares. It proves to be beneficial 

for feature selection and mitigating overfitting concerns. LASSO addresses overfitting by 
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shrinking the coefficient estimates toward zero and effectively reducing the number of 

variables through the utilization of a penalty parameter. [7, 8]. 

2.5. Random forest regression(RF) 

Random Forest Regression (RF) is a widely recognized and highly effective ensemble 

machine-learning algorithm that has gained significant popularity in the field. The main 

idea behind RF is to create a diverse ensemble of regression trees by randomly selecting 

subsets of samples and features through a process known as bootstrap sampling. RF excels 

in capturing complex non-linear relationships between input features and the target var-

iable. Moreover, it demonstrates robustness against overfitting, a common issue in ma-

chine learning models [9]. 

2.6. Extreme gradient boosting 

XGBoost is an innovative and scalable machine learning framework that constructs 

a sequential ensemble of shallow regression trees using the gradient boosting technique 

[10]. During the training process, a regression tree undergoes division of the input dataset 

into progressively more homogeneous subsets at each decision node. The selection of 

splits is optimized to maximize the dissimilarity between distinct terminal nodes, ensur-

ing effective discrimination [11]. 

2.7. k-Nearest Neighbor (kNN) 

K-nearest neighbor (kNN) is a fundamental technique in pattern recognition, falling 

under the umbrella of unsupervised machine learning methods. It operates by assigning 

class labels to objects based on their proximity to the nearest observed instances within 

the training dataset in the original feature space. [12]. 

2.8. AdaBoost 

AdaBoost algorithm can enhance the accuracy of a weak learning algorithm, which 

performs only slightly better than random guessing, and transform it into a strong learn-

ing algorithm with essentially unlimited accuracy. Its theoretical soundness has been a 

major factor in driving its success, both in academia and industry [13]. 

2.9. linear Support Vector Regression (LSVR) 

Support Vector Regression SVR is a widely employed linear regression model in the 

field of machine learning and data mining. It is an extension of least-squares regression 

that incorporates an єinsensitive loss function. Additionally, to prevent overfitting of the 

training data, regularization is typically applied. In essence, SVR is formulated as an op-

timization problem that involves two key parameters: the regularization parameter and 

the error sensitivity parameter [6]. 

2.10. Lassocv 

LassoCV in sci-kit-learn is a valuable tool for radionics feature selection [8]. It com-

bines cross-validation and Lasso regression, removing the requirement for manual regu-

larization coefficient specification. By automatically exploring a range of λ values through 

CV iterations, LassoCV identifies the optimal regularization parameter. This automated 

approach simplifies feature selection, improving the accuracy and effectiveness of radi-

omics analysis. 

2.11. Elastic net 

The elastic net (ENET) is a method that builds upon the lasso technique and provides 

robustness against strong correlations among predictor variables. It addresses the insta-

bility issue faced by the lasso approach when dealing with highly correlated predictors, 
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such as SNPs exhibiting high linkage disequilibrium. The ENET was specifically devel-

oped for analyzing high-dimensional data [14]. 

2.12. Bayesian ridge regression 

Bayesian ridge regression, similar to ridge regression, is a linear model that applies 

an L2 penalty to the coefficients. However, unlike ridge regression where the strength of 

the penalty needs to be manually set as a regularization hyperparameter, Bayesian ridge 

regression estimates the optimal regularization strength directly from the available data 

[15]. 

2.13. evaluation criteria 

To evaluate the effectiveness of the methodologies employed in this investigation, 

two evaluation metrics, namely root mean square error (RMSE) and the coefficient of de-

termination (also known as DC or Nash-Sutcliffe), were used. 

RMSE = √
∑  N

i=1   (Ri − Zi)
2

N
 (1) 

DC = 1 −
∑  N

i=1   (Zi − Ri)
2

∑  N
i=1   (Zi − Z‾)2

 (2) 

𝑅𝑖 is used to symbolize the estimated value, 𝑍𝑖  represents the target value, 𝑍‾ de-

notes the average value of the target observations, and N signifies the sample size. The 

RMSE retains the dimensionality of the observations, while the DC is dimensionless and 

lies within the interval of (-∞, 1]. A higher DC value converging towards 1 demonstrates 

an increased level of accuracy in the regression analysis. 

3. Results  

In this study, the objective was to accurately determine the optimal regression tech-

nique for downscaling climatology data based on GCMs. Among ten commonly used 

methods, the Can-Esm5 model was selected due to its higher nonlinearity and suitability 

for downscaling future parameters. The study considered four grid points and employed 

the MI method for feature selection, where the predictors with the highest MI values were 

identified as dominant predictors for each selected GCM (Table 1). Based on the MI fea-

ture selection method, variables related to temperature were consistently identified as the 

dominant predictors across all four grid points for the selected climates. 

Table 1. Appropriate predictors according to MI. 

Climate Type Dominant predictors 

A (tropical) Miami 

Temp(2), Temp(4) 

Temp(1), Shum(3) 

Temp(3), Shum(2) 

B (dry) Tabriz 

Temp(1), Temp(3) 

Temp(2), Temp(4) 

Mslp(1), S850(4) 

C (temperature) Madrid 

Temp(3), Temp(1) 

Temp(4) ,Temp(2) 

S850(4), S850(3) 

D (continental) Edmonton 

Temp(3), Temp(4) 

Shum(4), Temp(2) 

Temp(1), S850(3) 
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Before downscaling, the dominant predictors were standardized, and the data was 

split into calibration (75%) and validation (25%) sets to calibrate and validate the models. 

Ten regression methods were utilized to downscale the mean temperature for the four 

different climates (A: tropical, B: dry, C: temperature, D: continental). To evaluate the ef-

ficiency of these regression methods, RMSE and DC methods were employed. The results 

of mean temperature downscaling, as evaluated by RMSE and DC criteria, are presented 

in Fig. 2.  

 

 

Figure 2. Performance of the downscaling models for temperature a) DC and b) RMSE. 

4. Conclusion  

This study identifies the optimal regression technique among a set of ten methods 

for downscaling mean temperature in four distinct climatic regions. For increasing the 

accuracy of the models MI feature selection had been utilized. Study results indicated that 

for the city of Miami with a tropical climate (A), the Bayesian Ridge method outperformed 

the other methods. In Tabriz, a city with a dry climate (B), the LASSOCV method was 

identified as the most efficient. For Madrid, a city with a temperature climate (C), the 

KNeighbors regressor was the dominant method. Lastly, for Edmonton, a city with a con-

tinental climate (D), the SVR method exhibited superiority over other methods. For future 

studies, it is recommended to use other regression analyses for each climate sub-set of 

Köppen climate zones. 
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