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Abstract: The binomial distribution is the probability distribution of the number of successes for
a sequence of n independent trials with success probability p. Efficiently generating binomial
random variates is important in many modeling and simulation applications, such as in medicine,
risk management, fraud and anomaly detection, among others. A variety of algorithms exist for
generating binomial random variates. This paper concerns the algorithm chosen for ρµ, an open
source Java library for efficient randomization, which uses a hybrid of two existing binomial random
variate algorithms: the BTPE Algorithm (Binomial, Triangle, Parallelogram, Exponential), and the
inverse transform for cases that BTPE cannot handle. BTPE uses rejection sampling, and BTPE’s
authors originally provided an analytical formula for the expected number of iterations in terms
of n and p. That expression is complicated to interpret in practical contexts. I explore BTPE by
instrumenting ρµ’s implementation to empirically analyze its acceptance/rejection behavior to gain
further insight into its runtime performance. Although the number of iterations depends upon n
and p, my experiments show that the average number of iterations is always under 2, and that the
average number of random uniform variates required to generate a single random binomial is under
4 (2 per iteration). Thus, when analyzing the runtime of a simulation algorithm that includes steps
generating random binomials, one can consider such steps to have a constant runtime.
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1. Introduction

The binomial distribution is the probability distribution of the number of successes
for a sequence of n independent Bernoulli trials with success probability p [1]. Binomial
random variates are important in many modeling and simulation [2] applications, such
as in medicine [3–6], risk management [7,8], fraud and anomaly detection [9], among
others [10]; and many algorithms exist for their efficient generation [2,11–15].

The focus of this paper is on the algorithm chosen for generating binomial random
variates for the ρµ library [16]. The open source Java library ρµ [16] provides enhanced
random number generation atop what the Java API itself includes. Java 17 introduced a
hierarchy of random number generator interfaces, several new random number generators,
among other new randomization features [17]. The core functionality of ρµ is provided
through a hierarchy of wrapper classes, which corresponds with the hierarchy of random
number generator interfaces introduced in Java 17. In some cases, ρµ’s classes override the
behavior of Java’s random number generators with faster algorithms, such as for random
integers subject to a bound or generating random Gaussians; while in other cases, ρµ adds
functionality not built into the Java API’s classes, such as additional distributions such
as the binomial, among others [16]. The ρµ library provides efficient random number
generation to other libraries, such as JavaPermutationTools [18] and Chips-n-Salsa [19].

Motivating research question: What is the computational cost to generate a random
value from binomial distribution B(n, p)? Answering this question is important for analysis
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of algorithms that rely upon binomial random variates. To generate binomial random
variates, ρµ [16] utilizes a combination of the BTPE Algorithm (Binomial, Triangle, Parallel-
ogram, Exponential) [11] and the inverse transform [11,15] for cases that can’t be handled
by BTPE. The runtime of the inverse transform is O(np) [11,15]. However, BTPE’s run-
time doesn’t appear to grow in the same way, if at all. BTPE uses acceptance-rejection
sampling [20]. BTPE’s authors originally provided an analytical formula for the expected
number of acceptance-rejection iterations in terms of n and p. Interpreting that expression is
less than practical. In order to further understand the computational efficiency of binomial
random variate generation, I instrumented ρµ’s implementation of BTPE to empirically an-
alyze its acceptance-rejection behavior to gain further insight into its runtime performance.
Although the number of iterations depends upon n and p, my experiments show that the
average number of iterations is always under 2, and that the average number of uniform
random variates required to generate a single random binomial is under 4. Thus, when
analyzing the runtime of a simulation algorithm that includes steps generating random
binomials, one can consider such steps to have a constant runtime.

I explain the experimental methodology in Section 2, and I present the results in
Section 3. The source code of the experiments, the raw and processed data, and analysis is
available on GitHub at https://github.com/cicirello/btpe-iterations (accessed on 8 August
2023). The source code for ρµ is also on GitHub at https://github.com/cicirello/rho-mu
(accessed on 8 August 2023). I conclude with a discussion in Section 4.

2. Methods
2.1. Binomial Random Variate Generation

The ρµ library [16] generates binomial random variates primarily using BTPE [11],
falling back on the inverse transform [11,15] when np is small. BTPE divides the distribution
into four parts, using triangular functions in the middle, and exponential functions in the
tails; and uses acceptance-rejection sampling [20]. For complete details of BTPE, which are
beyond the scope of this paper, I refer the reader to the article that introduced it [11].

2.2. Expected Acceptance-Rejection Iterations

To generate a random value from binomial distribution B(n, p), each acceptance-
rejection iteration of BTPE generates two random values from U(0, 1), i.e., uniformly
distributed over the interval [0.0, 1.0). When they introduced BTPE, Kachitvichyanukul
and Schmeiser determined that the expected number of iterations of BTPE is [11]:(

n
M

)
rM(1− r)n−M

∫ ∞

−∞
t(x) dx, (1)

where r = min(p, 1− p), M = bnr + rc, and t(x) is BTPE’s majorizing function (see [11]
for details of t(x)). Since each iteration generates two random uniform values from U(0, 1),
the expected number of uniform variates required by BTPE is thus:

2
(

n
M

)
rM(1− r)n−M

∫ ∞

−∞
t(x) dx. (2)

2.3. Empirical Methodology

It is not obvious whether Equations (1) and (2) grow with n, or grow with np, or grow
with nr, etc? And if so, how quickly? BTPE is fast. Despite being a 35 year old algorithm, it
is one of the best available for all but the smallest np. I set out to empirically explore the
runtime behavior of BTPE to provide a practical perspective to Equations (1) and (2).

To accomplish this, I wrapped an instance of Java’s SPLITTABLERANDOM class, which
implements the splitmix [21] pseudorandom number generator, in order to instrument it to
count the number of calls to its NEXTDOUBLE() method, which generates uniform random
floating-point values in the interval [0.0, 1.0). This wrapped random number generator is
then used as the source of randomness for ρµ’s implementation of BTPE.
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I consider values of n ∈ {25, 26, . . . , 220}. BTPE is only relevant for: nr ≥ 10.
Thus, p = 10

n is the minimum applicable value of p. For a given n, consider p ∈
{ 10

n , 16
n , 32

n , . . . , 1
2 , . . . , n−32

n , n−16
n , n−10

n }. For each combination of n and p, I use BTPE to
generate 10,000 binomial random variates. During which, I compute the average number of
uniform variates per binomial, with 95% confidence intervals. I use Equation (2) to predict
the number of uniform variates for each case, and test significance with a t-test.

I used OpenJDK 17 on a Windows 10 PC with a 3.4 GHz AMD A10-5700 CPU and 8
GB RAM. The experiments used ρµ 3.1.1. The source code for the experiments is on GitHub
at https://github.com/cicirello/btpe-iterations (accessed on 8 August 2023), as well as for
ρµ at https://github.com/cicirello/rho-mu (accessed on 8 August 2023).

3. Results

Tables 1–4 show the results for n ∈ {25, 210, 215, 220}. These were chosen as rep-
resentative cases. The raw and processed data for all cases are available on GitHub at
https://github.com/cicirello/btpe-iterations (accessed on 8 August 2023). The empirical
results confirm the analytical prediction of Equation (2). For all cases, there is no significant
difference between the analytical prediction and the empirically computed means. T-test
p-values are above 0.05 in almost all cases (well above in most cases). The small number of
cases where the t-test p-values are less than 0.05 are explained by random chance. Due to
random chance alone, at level 0.05, we should expect this for approximately 5% of cases.
This occurred in 3 of the 72 cases represented in the tables (approximately 4% of cases).

Table 1. Average number of calls to U(0, 1) by ρµ’s BTPE implementation for n = 1,048,576.

p ρµ Mean Predicted T-Test p-Value

0.0000095367 3.81± 0.051 3.80 0.74
0.0000152588 3.42± 0.043 3.45 0.21
0.0000305176 2.99± 0.034 2.94 0.01
0.0000610352 2.60± 0.025 2.63 0.06
0.0001220703 2.48± 0.021 2.49 0.54
0.0002441406 2.35± 0.018 2.33 0.17
0.0004882812 2.29± 0.016 2.30 0.41
0.0009765625 2.26± 0.015 2.26 0.95
0.001953125 2.25± 0.015 2.26 0.48
0.00390625 2.27± 0.015 2.27 0.90
0.0078125 2.27± 0.015 2.28 0.27
0.015625 2.29± 0.016 2.29 0.61
0.03125 2.30± 0.016 2.30 0.65
0.0625 2.29± 0.016 2.30 0.17
0.125 2.29± 0.016 2.31 0.06
0.25 2.30± 0.016 2.31 0.24
0.5 2.31± 0.017 2.31 0.58

0.75 2.31± 0.016 2.31 0.60
0.875 2.31± 0.016 2.31 0.87

0.9375 2.30± 0.016 2.30 0.75
0.96875 2.29± 0.016 2.30 0.57

0.984375 2.28± 0.016 2.29 0.10
0.9921875 2.27± 0.015 2.28 0.29
0.99609375 2.27± 0.015 2.27 0.94

0.998046875 2.26± 0.015 2.26 0.58
0.9990234375 2.25± 0.015 2.26 0.47
0.9995117188 2.29± 0.016 2.30 0.63
0.9997558594 2.33± 0.017 2.33 0.62
0.9998779297 2.48± 0.021 2.49 0.28
0.9999389648 2.63± 0.025 2.63 0.73
0.9999694824 2.95± 0.033 2.94 0.78
0.9999847412 3.44± 0.043 3.45 0.75
0.9999904633 3.84± 0.053 3.80 0.17
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Across all cases, the analytical prediction from Equation (2) indicates a maximum
expected number of uniform variates approximately 3.84 (n = 32 and p = 0.3125). The
empirical maximum mean was 3.84 and the minimum was 2.25. So although the average
number of uniform variates needed by BTPE to generate one binomial variate fluctuates
with n and p, it remains less than 4 even for very large n.

Table 2. Average number of calls to U(0, 1) by ρµ’s BTPE implementation for n = 32,768.

p ρµ Mean Predicted T-Test p-Value

0.0003051758 3.81± 0.052 3.80 0.73
0.0004882812 3.48± 0.044 3.45 0.13
0.0009765625 2.96± 0.033 2.94 0.50
0.001953125 2.62± 0.025 2.63 0.51
0.00390625 2.48± 0.021 2.49 0.15
0.0078125 2.34± 0.017 2.34 0.81
0.015625 2.27± 0.015 2.27 0.55
0.03125 2.26± 0.015 2.26 0.92
0.0625 2.25± 0.015 2.26 0.57
0.125 2.28± 0.015 2.28 0.43
0.25 2.29± 0.016 2.28 0.59
0.5 2.29± 0.016 2.30 0.08

0.75 2.30± 0.016 2.28 0.16
0.875 2.27± 0.016 2.28 0.62

0.9375 2.26± 0.015 2.26 0.76
0.96875 2.26± 0.015 2.26 0.53

0.984375 2.28± 0.015 2.27 0.15
0.9921875 2.32± 0.017 2.34 0.04
0.99609375 2.48± 0.021 2.49 0.22

0.998046875 2.62± 0.025 2.63 0.69
0.9990234375 2.98± 0.034 2.94 0.08
0.9995117188 3.45± 0.044 3.45 0.81
0.9996948242 3.78± 0.051 3.80 0.53

Table 3. Average number of calls to U(0, 1) by ρµ’s BTPE implementation for n = 1024.

p ρµ Mean Predicted T-Test p-Value

0.009765625 3.82± 0.051 3.80 0.42
0.015625 3.49± 0.045 3.46 0.16
0.03125 2.94± 0.033 2.97 0.06
0.0625 2.70± 0.027 2.69 0.53
0.125 2.52± 0.022 2.52 0.38
0.25 2.36± 0.018 2.34 0.09
0.5 2.30± 0.016 2.32 0.11

0.75 2.35± 0.018 2.34 0.36
0.875 2.54± 0.022 2.52 0.30

0.9375 2.67± 0.026 2.69 0.14
0.96875 3.00± 0.034 2.97 0.05
0.984375 3.41± 0.043 3.46 0.05

0.990234375 3.79± 0.051 3.80 0.74

Table 4. Average number of calls to U(0, 1) by ρµ’s BTPE implementation for n = 32.

p ρµ Mean Predicted T-Test p-Value

0.3125 3.83± 0.052 3.84 0.76
0.5 3.58± 0.046 3.60 0.46

0.6875 3.78± 0.050 3.84 0.03
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4. Discussion and Conclusions

Modeling and simulation applications in many domains require efficiently generating
binomial random variates. The runtime of some algorithms for such generation grows with
n or with np. For example, the average runtime of the inverse transform approach is O(np).
Other algorithms are quite fast even for large np, such as BTPE. BTPE’s runtime does vary
based on n and p, as analyzed by its authors. However, in the empirical investigation in
this paper, I complement the existing analytical result by showing that the average number
of acceptance-rejection iterations is always less than 2, even for large n and np, and that
the average number of uniform variates needed to generate a single binomial is less than 4.
Thus, if generating a binomial random variate is a step of another algorithm, such steps
can be treated as O(1) in average case runtime analysis.

One limitation of this empirical study, as well as in the analytical expression of
Equation (2), is that it considers the average case. The acceptance-rejection sampling
cycle of BTPE can potentially run longer. For example, during the experiments, the max-
imum number of uniform variates generated while producing a single binomial was 38
(19 iterations), compared to the average of less than 4. Longer runs of BTPE are not common.
For example, during this study, 2.88 million binomial random variates were generated, and
longer runs of BTPE were relatively rare occurrences. However, if you are analyzing the
algorithmic complexity of an algorithm that uses BTPE as a subroutine, this result limits
you to an average case analysis of that algorithm, rather than a worst case analysis. We
may explore in the future whether it may be possible to compute an upper bound on the
number of acceptance-rejection sampling iterations to resolve this limitation.
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