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Abstract: Addition of copper bromide to the perovskite precursor solutions increased the conver-

sion efficiencies of the devices. On the other hand, the short-circuit current densities decreased with 

increasing the added amounts of copper (Cu). From first-principles calculations, partial substitution 

of lead with Cu resulted in the formation of a Cu d orbital energy level in the forbidden band, which 

worked as a recombination center, causing the generated carriers to disappear. Experiments and 

calculations show the effects of Cu substitution on the electronic structures and the ability of the 

addition of Cu compounds to further improve the device performance. 
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1. Introduction 

Perovskite materials with excellent photovoltaic properties have been studied using 

a wide variety of approaches, including first-principles calculations [1–5], machine learn-

ing [6–10] and device characteristics simulations [11–15], in addition to experiments [16–

22]. Although the conversion efficiency and stability of perovskite solar cells are gradually 

improving, most perovskite materials with excellent performance contain toxic Pb. In or-

der to reduce toxicity for commercialization, alternative elements to Pb are being investi-

gated [23–29]. In previous studies investigating the effect of Cu compound addition in 

methylammonium (MA) or Cs-based perovskites, it was reported that the additions of 

small amounts of Cu to the perovskite precursor solution increased the grain size and 

improved the film quality, which contributed to improved device properties [30–34]. Fur-

thermore, the combination of Cu with alkali metals or organic cations more stable than 

MA improved the conversion efficiency and stability of perovskite solar cells [35–38]. 

In this study, the effects of the addition of Cu compounds to the perovskite precursor 

solution and the substitution of Pb with Cu on the device properties and electronic struc-

ture were investigated [39]. The amount of Cu added was varied in the range of 0, 1, 2, 3 

and 12.5%, and current-voltage characterization and X-ray diffraction measurements 

were performed. In addition, first-principles calculations were performed to determine 

the effect of Cu substitution in methylammonium-based perovskite crystals from the band 

structure and partial density of states. 

2. Device Fabrication and Computational Conditions 

The structure of the fabricated perovskite solar cell is fluorine doped tin oxide 

glass/compact TiO2/mesoporous TiO2/CH3NH3PbI3/spiro-OMeTAD/Au. CuBr2 was used 

as the Cu compound to be added to the perovskite precursor solution, with 0% Cu as the 

Citation: Okumura, R.; Oku, T.;  

Suzuki, A.; Fukunishi, S.; Tachikawa, 

T.; Hasegawa, T. Effects of Copper 

Substitution in Methylammonium-

Based Perovskite Solar Cells. Eng. 

Proc. 2023, 52, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor(s): Name 

Published: date 

 

Copyright: © 2023 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Eng. Proc. 2023, 52, x FOR PEER REVIEW 2 of 6 
 

 

standard device and different Cu additions in the range of 1, 2, 3 and 12.5%. The details 

of the experimental methods are described in the previous papers [35]. 

A 2 × 2 × 2 supercell was built and one of the eight B-sites was substituted with Cu to 

produce a structural model of MAPb0.875Cu0.125I3. The energy gap and carrier effective mass 

were calculated from the band structure, and information on orbitals was obtained from 

the partial density of states (pDOS). The details of the calculation method are described in 

the previous papers [39]. 

3. Results and Discussion 

Figure 1 shows the cell parameters as a function of the amount of Cu compound 

added to the perovskite precursor solution. Table 1 shows the values of the cell parameters 

obtained from the current-voltage characterization. The highest open circuit voltage (VOC) 

and fill factor (FF) were obtained when 2% Cu was added, and the conversion efficiency 

was higher than standard devices. The short-circuit current density (JSC) tended to de-

crease with increasing Cu addition, and the conversion efficiency decreased compared to 

the standard device when the Cu content exceeded 2%. 

  
(a) (b) 

  
(c) (d) 

Figure 1. Cell parameters as a function of the amount of Cu compound added to the perovskite 

precursor solution. 

Table 1. Device properties of perovskite solar cells. 

Cu2+ JSC VOC FF RS RSh η ηave Eg 

(%) (mA cm−2) (V)  (Ω cm2) (Ω cm2) (%) (%) (eV) 

0 21.6 0.879 0.657 4.04 1664 12.5 10.4 1.55 

1 20.9 0.898 0.681 3.49 1526 12.8 11.6 1.55 

2 20.4 0.919 0.701 3.03 1507 13.1 11.7 1.56 

3 20.2 0.892 0.638 4.85 1213 11.5 10.5 1.56 
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12.5 14.3 0.870 0.591 5.07 621 7.33 6.07 1.60 

Table 2 shows the results of the X-ray diffraction pattern analysis. The crystallite size 

increased with the addition of Cu to the precursor solution, with 2% Cu showing the high-

est conversion efficiency and the highest perovskite (100) plane orientation. The increase 

in the lattice parameter with the addition of small amounts of Cu was attributed to lattice 

distortion due to Cu substitution. For 12.5% Cu, the ionic radius of Cu is smaller than that 

of Pb, so the lattice shrank as more Cu was incorporated into the perovskite crystals. 

Table 2. Parameters obtained from X-ray diffraction measurements. 

Cu2+ I100/I210 Lattice Parameter Crystallite Size 

(%)  (Å) (Å) 

0 3.4 6.267(0) 394 

1 3.7 6.269(1) 549 

2 4.6 6.268(0) 663 

3 4.2 6.268(1) 548 

12.5 2.2 6.243(0) 625 

First-principles calculations were performed to investigate the cause of the decrease 

in JSC with increasing Cu addition. Figure 2 shows the calculated band structure and den-

sity of partial states. Table 3 shows the values of the parameters obtained from the first-

principles calculations. From Figure 2c, the valence and conduction bands are composed 

of I p and Pb p orbitals, respectively. When Pb is partially substituted by Cu, the band gap 

decreases due to the lower energy of the Pb p orbital. Furthermore, an energy level of the 

Cu d orbital was formed in the forbidden band. Considering the experimental results, the 

energy level of the Cu d orbital worked as a defect level, causing the loss of the generated 

carriers and the reduction of the JSC. In the absence of Cu, electrons are excited from the I 

p orbital to the Pb p orbital. In the presence of Cu, electrons can be excited from the I p 

orbital to the Cu d or Pb p orbital, resulting in two patterns of excitation processes. Despite 

the increase in the excitation probability, the decrease in device properties with increasing 

Cu addition means that it is difficult to extract electrons excited from the I p orbital and 

trapped in the Cu d orbital as charge carriers. Experimental and computational results 

indicate that Cu substitution has a negative effect on the electronic structure and that the 

defect levels formed in the forbidden bands reduce the JSC. Therefore, the enhancement of 

device properties by the addition of Cu compounds to the precursor solution is attributed 

to improvements in the microstructure of the perovskite film, such as an increase in crys-

tallite size and perovskite crystal (100) plane orientation. 

Table 3. Parameters obtained from first-principles calculations. 

Model Total Energy Energy Gap me*/m0 mh*/m0 mh*/m0 
Contribution 

of Transition 

Oscillator 

Strength 
 (eV cell−1) (eV) Pb I Cu (%)  

MAPbI3 −3495 1.480 0.229 0.208 − 16.7 0.0168 

Cu 12.5% −3363 1.438 0.240 0.239 0.355 62.2 0.0287 
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Figure 2. Calculated band structures and DOS of (a,c) MAPbI3 and (b,d) MAPb0.875Cu0.125I3. 

4. Conclusions 

The addition of 2% Cu to the perovskite precursor solution improved the VOC and FF 

and enhanced the conversion efficiency of the device. The calculated band structure and 

density of partial states indicate that the substitution of Pb for Cu has a negative effect on 

the electronic structure, with the formation of Cu d-orbital energy levels in the forbidden 

band causing carrier recombination and lowering the JSC. Therefore, it is difficult to adopt 

Cu as a replacement element for Pb, but the addition of small amounts of Cu compounds 

to the perovskite precursor solution was shown to contribute to further enhancement of 

device properties. 
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