

1

2

3

4

5

6 7

Proceedings Study on the feasibility of agrivoltaics in the Kansai region of Japan⁺

Hideki Nakata * and Seiichi Ogata

Graduate School of Energy Science, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan * Correspondence: nakata.hideki.28r@st.kyoto-u.ac.jp; Tel.: +81-75-753-5834 + Precented at the title, online, and 15 October 2022

+ Presented at the title, online, and 15 October 2023.

Abstract: As the climate crisis intensifies, the urgency for sustainable, agroecological farming prac-
tices has never been greater. This study explores the potential of agrivoltaic system (AVS) to meet
these needs efficiently. Utilizing geographic information systems for quantitative analysis, the re-
search assesses electricity generation, agricultural output, job creation, and economic impact of im-
plementing AVS in Japan's Kansai region. The study identifies a generation ample potentials, in-
cluding up to 14,041 GWh/year of electricity generation, suggesting that AVS could be instrumental
in shaping effective policies for both decarbonization and food security.8

Keywords: agrivoltaics; geographic information system; decarbonizing agriculture

15 16

17

1. Introduction

The escalating climate crisis makes decarbonizing all sectors, including agriculture. 18 Approximately 30% of global greenhouse gas emissions originate from agriculture, neces-19 sitating immediate measures for its decarbonization[1]. To tackle this, the agrivoltaic sys-20 tem (AVS), which allows for both farming and solar power generation on one land tract, 21 has gained much interest. The agrivoltaic concept was originally introduced in 1982 by 22 Goetzberger and Zastrow, affiliated with Germany's Fraunhofer Institute for Solar Energy 23 Systems ISE[2]. In Japan, an AVS support program was initiated in 2013, and as of 2021, a 24 cumulative total of 3474 AVSs had been approved for establishment[3]. 25

AVS offers multiple benefits rooted in agroecology[4,5]. As an example, AVS protect 26 the ground and plants from direct sunlight and increase water use efficiency. Further-27 more, the revenue generated by AVS has the effect of diversifying farmers' incomes. This 28 diversification provides farmers with opportunities for economic independence and 29 value-adding to their products. In addition, AVS encourages farmers to reclaim farmland 30 by increasing the profitability of abandoned farmland with unfavorable agricultural con-31 ditions. This process preserves above- and below-ground biodiversity. AVS-based syner-32 gies can practically implement agroecology principles. 33

On the other hand, certain instances of AVS diverge from the foundational principles 34 of agroecology. For example, in Japan, there are more than 100 instances where agricul-35 tural yields, influenced by AVS, fall below 20% of the region's average agricultural out-36 put[6]. Among various reasons contributing to these problematic cases is an inappropriate 37 balance between power generation and agriculture. In particular, there are cases where 38 solar power generation has been excessively prioritized - by installing too many solar 39 panels, for instance — to the point that it interferes with agriculture, and agriculture has 40 been relegated to a perfunctory role, known as "pseudo-farming. Appropriate system de-41 sign is essential to prevent such instances. 42

Against this backdrop, the objective of this research is to assess the viability of introducing AVS in a manner that maintains a balanced relationship between agricultural and 44

Citation: To be added by editorial staff during production.

Academic Editor: Firstname Lastname

Published: date

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/). power generation activities. Moreover, it aims to acquire an in-depth understanding of 1 the prevailing conditions in the region under study. The results of this research will present policy makers with critical insights into the current status of agroecology in the region, thereby aiding in appropriate system design and the formulation of effective policies. 5

2. Methods

2.1. Study area

For the geographical focus of this research, the Kansai region of Japan serves as the study area. Situated in the southern central part of the country, this region encompasses seven prefectures and 227 municipalities. As of 2020, the total population amounts to 22,311,695, spread over an area of 33,125.70 km²[7]. The region is home to Japan's second-largest industrial zone, the Hanshin Industrial Region, where manufacturing predominates[8].

2.2. Scenario development and analysys

This study undertakes a quantitative evaluation of the prospects for introducing 15 AVS. The target areas for this deployment are circumscribed to reclaimable idle farmland, 16 a choice influenced by considerations of food and energy security. Moreover, farmlands 17 that are severely degraded – such as those converted into forest lands – are excluded from 18 the project's scope. The estimated cost for rehabilitating idle, yet minimally devastated, 19 farmland ranges between 15,000 and 18,000 euros per hectare[9]. Although the introduc-20 tion of AVS to severely devastated farmland would have a greater potential, the cost of 21 rehabilitating farmland would be too high and difficult to commercialize, so it is not in-22 cluded in the scope of this study. 23

We limit the land area occupation ratio (LAOR) of the AVSs to be introduced to 35%. 24 The LAOR is "the ratio between the area of the modules and the area of land that they occupy"[10]. The value of 35% is a level that does not interfere with agricultural production for many crop species grown in Japan[11]. For the system architecture, a rattan-shelf open-field-type AVS is selected. 28

The study employs soybean as the chosen crop, owing to its versatility in serving as 29 food, livestock feed, and a meat substitute. Given that Japan's self-sufficiency rate for soy-30 beans languishes at merely 6-7%, the production of this crop is considered to bolster national food security[12]. 32

Finally, two distinct scenarios inform the estimation of idle farmland distribution. 33 The Full Coverage Scenario (FC) contemplates the installation of AVS across all reclaimable idle farmlands, whereas the Priority Coverage Scenario (PC) restricts AVS implementation to areas that are identified as being particularly conducive for AVS deployment based on the FC Scenario. 37

In this study, to accurately estimate the distribution of revitalizable idle agricultural 38 land, this study employed Agricultural Land Polygon Data and the High-Resolution Land 39 Use and Land Cover Map of Japan (HRLULC). The former is published by Japan's Minis-40 try of Agriculture, Forestry and Fisheries (MAFF) and was developed through the inter-41 pretation of satellite imagery to capture the footprints of potential agricultural land[13]. 42 This data allows for high-precision, parcel-by-parcel identification of farmland while ex-43 cluding non-cropland and severely devastated farmland. To further refine the target area 44 by excluding currently used farmland, HRLULC data from the Japan Aerospace Explora-45 tion Agency (JAXA) was utilized. This machine-classified data comprises 12 categories, 46 such as paddy fields, croplands, and grasslands, based on average usage from 2018 to 47 2020. The data is resolved to a mesh size (1 / 12,000) degree × (1 / 12,000) degree, corre-48 sponding to an approximate 10 m × 10 m, with an overall accuracy reported at 88.85% [14]. 49

To mitigate disaster risk, the selection of target areas was further constrained. Specifically, areas vulnerable to landslides and flooding, as delineated in Table 1, were excluded, 51

12 13

6

7

8

9

10

11

as were lands requiring ecosystem conservation. In the PC scenario, AVS introduction is 1 confined to farmlands with high suitability for AVS, based on slope and aspect indicators. 2 Farmlands intersecting with areas identified in the lower part of Table 1 are solely ex-3 cluded from the PC scenario. 4

Table 1. High-risk areas excluded from this study's consideration.

Scenarios	High risk areas				
	Sediment disaster alert areas				
	steep slope failure hazard areas				
	Flood disaster alert areas				
Both scenarios	Areas with steep slopes (20 or more degrees)				
	Natural parks Landscape districts				
	Wildlife protection areas				
Order DC accordance	Areas with moderate slopes (10-20 degrees)				
Unly PC scenario	Areas with northern maximum slope directions				

Source: Compiled from [15,16].

In addition, a non-installed area was established 5 m inward from the boundary of 7 each agricultural field based on a survey by the Japanese Ministry of the Environment 8 (MOE). This non-installed area is established to avoid shadowing of the AVS structures 9 on adjacent land and to maintain operational efficiency. In addition, based on the MOE 10 survey, parcels with an area of less than 16 m² after exclusion were excluded from the 11 survey. 12

Following the mapping of idle farmland, the impact of AVS installation was quanti-13 fied. Power generation was estimated utilizing solar radiation and temperature data from 14 Japan's New Energy and Industrial Technology Development Organization (NEDO)[18]. 15 Agricultural yields were assessed at 80% of the per-area soybean harvest in each prefec-16 ture, premised on the use of conventional farming methods[19]. This 80% threshold serves 17 as the minimum yield required for the ongoing approval under Japan's AVS support pro-18gram, constituting a conservative assumption[20]. Prior research indicates that even at 73-19 75% solar transmittance, 85-92% of control yields were achieved, justifying this as a pru-20 dent assumption[11]. 21

Economic and employment impacts were also analyzed. Ripple effects within each 22 prefecture were assessed using the economic ripple effect analysis tool published by the 23 MOE[21]. The economic impact in the power generation sector is predicated on electricity 24 sales through the feed-in tariff system. In agriculture, ripple effects were calculated using 25 the average bid price of Japanese soybeans in 2022 (70.5€/60kg)[22]. 26

The employment creation effects were estimated for the power generation and agri-27 cultural sectors. For the power generation sector, an employment coefficient per GWh of 28 electricity generated per year was used. This employment factor takes into account direct 29 and indirect employment in both the construction and operation and maintenance 30 phases[24]. In the agricultural sector, the detected idle farmland area was multiplied by 31 the average number of agricultural workers per area in each province[25].

3. Results and Discussion

3.1. Full coverage scenario

The results of FC scenario analysis are summarized in Table 2. The highest estimated 35 annual power generation in the first year reaches 3953.59 GWh in Mie, compared to a low 36 of 708.42 GWh in Osaka. In Wakayama, the data suggests that nearly 30% of annual elec-37 tricity consumption could be sourced from photovoltaic power generation. Furthermore, 38 the implementation of AVS could potentially create employment opportunities ranging 39

6

5

32

33

from 2,653.88 person-years in Nara to 12,803.41 person-years in Mie. The majority of re-1 gional economic ripple effects are attributable to the power generation sector, with im-2 pacts varying from 0.14% of the Gross Regional Product (GRP) in Osaka to 3.51% in Mie 3 at the construction stage. 4

m 11 a	D 1/	6.1	C 11		•	
Table 2	Results	ot the	±1111	coverage	scenario	analysis
I ubic 2.	neouno	or the	run	coverage	occitatio	ununy 515.

Indicators of performance	Unit	Mie	Shiga	Kyoto	Osaka	Hyogo	Nara	Waka- yama	Total
Idle cropland area	km ²	39.59	22.73	14.67	7.45	37.29	8.16	17.09	33125.97
The rate of idle cropland area to total area	%	0.69	0.57	0.32	0.39	0.44	0.22	0.36	0.44
System capacity	MWac	3353.59	1872.26	1190.38	615.19	3096.18	669.76	1419.09	12216.43
Annual electricity generation (1 st year)	GWh	3954.12	2104.31	1271.87	708.42	3575.55	749.55	1677.67	14041.49
The rate of electricity generated compared to consumption ¹	%	21.4	18.5	8.0	1.3	10.7	11.9	28.2	9.6
Food production (soybeans)	t	234.40	278.20	100.91	42.29	253.55	61.34	120.31	1091.00
Job creation (Construction)	Person- years	6761.55	3598.38	2174.9	1211.39	6114.19	1281.73	2868.82	24010.95
Job creation (O&M)	Person- years	4468.16	2377.88	1437.21	800.51	4040.37	846.99	1895.77	15866.88
Job creation (Agriculture)	Person- years	1573.70	743.42	883.08	652.97	2146.89	525.16	1648.32	8173.54
Economic ripple effects (Construction)	EUR 1M	4811.75	2656.85	1766.44	943.09	4581.82	999.90	2027.28	17787.14
Economic ripple effects (O&M, 1 st year)	EUR 1M	507.79	279.49	188.86	101.02	487.04	108.38	215.5	1888.08
Economic ripple effects (Agriculture)	EUR 1M- years	0.33	0.38	0.14	0.06	0.36	0.09	0.17	1.54
Nominal gross regional product ²	EUR 1M	58,683	50,067	78,177	299,810	161,916	28,485	27,262	704,400

¹.FY2021 electricity consumptions[26], ².FY2019 nominal gross regional product[27].

3.2. Priority coverage scenario

In PC scenario, the potential assessment is limited to areas with high potential for 8 AVS installation, so the scale of installation is smaller. Actually, as shown in Table 3, the 9 area of idle farmland diminishes substantially: 3.41 km² in Osaka compared to 16.97 km² 10 in Mie under FC scenario. The most marked reduction occurs in Shiga, where the area 11 decreases from 22.73 km² in FC scenario to just 7.11 km²-a 68.7% reduction. Conversely, 12 both Mie and Wakayama still demonstrate the potential to cover about 10% of their annual 13 electricity consumption through solar power, even within the constraints of PC scenario. 14

3.3. Discussion

Focusing on the Kansai region of Japan, this study suggests that the implementation 16 of AVS serves as an effective means for achieving agroecological principles. Under both 17 the FC and PC scenarios, the reclamation of idle cropland encompasses an area ranging 18 from 59 to 147 km². This reclamation provides multiple benefits, including enhanced food 19 and energy security, ecosystem preservation, and increased resilience in agricultural op-20 erations. Policymakers should consider leveraging these benefits while mitigating inap-21 propriate land use by operators pursuing short-term economic gains. Immediate tasks for achieving this may include disseminating best practices, providing financial incentives, 23 or strictly regulating problematic practices. 24

5

6

7

- 15
- 22

Indicators of performance	Unit	Mie	Shiga	Kyoto	Osaka	Hyogo	Nara	Waka- yama	Total
Idle cropland area	km ²	16.97	7.11	5.48	3.41	16.41	3.82	6.20	59.39
The percentage of idle cropland area to total area	%	0.29	0.18	0.12	0.18	0.20	0.10	0.13	0.18
System capacity	MWac	1436.35	584.48	444.36	282.22	1361.58	313.12	515.42	4937.54
Annual electricity generation (1 st year)	GWh	1689.39	651.26	474.04	325.07	1569.14	350.00	610.54	5669.44
The rate of electricity generated compared to consumption	%	9.1	5.7	3.0	0.6	4.7	5.6	10.3	3.9
Food production (soybeans)	t	100.48	87.03	37.69	19.38	111.56	28.70	43.62	428.46
Job creation (Construction)	Person- years	2888.86	1113.65	810.62	555.88	2683.23	598.50	1044.02	9694.74
Job creation (O&M)	Person- years	1909.01	735.92	535.67	367.33	1773.13	395.50	689.91	6406.47
Job creation (Agriculture)	Person- years	674.59	232.56	329.86	299.32	944.59	245.67	597.59	3324.18
Economic ripple effects (Construction)	EUR 1M	2060.78	829.39	659.39	432.65	2014.87	467.45	736.27	7200.81
Economic ripple effects (O&M, 1 st year)	EUR 1M	219.85	88.27	70.71	46.38	214.78	50.91	78.93	769.82
Economic ripple effects (Agriculture)	EUR 1M- years	0.14	0.12	0.05	0.03	0.16	0.04	0.06	0.61
Nominal gross regional product	EUR 1M	58,683	50,067	78,177	299,810	161,916	28,485	27,262	704,400

Table 3. Results of the priority coverage scenario analysis.

Additionally, one key aspect that is underexplored in this study relates to the diver-3 sity of agriculture and AVS practices. The current research focuses primarily on soybean 4 cultivation, using both rattan-shelf AVS and conventional farming methods. However, 5 from an agroecological standpoint, the incorporation of more complex agricultural sys-6 tems—such as variety mixtures and crop-livestock integration—is warranted. In the do-7 main of power generation, a diverse range of systems exists, including vertical bifacial 8 setups, PV greenhouse systems, and spectrally selective solar modules. Although these 9 advanced systems are not explored in this study, their integration could offer synergistic 10 advantages within an agroecological framework. 11

4. Conclusions

AVS is an effective tool for achieving agroecological principles. Our study shows 59-13147 km² of idle cropland in Japan's Kansai region. AVS on these lands could produce 5669-1414041 GWh of power and 428-1091 tons of soybeans yearly. This effort could create jobs15and economic revenue from construction to maintenance. These findings underscore the16considerable contributions that AVS can make to agroecology, which is critical infor-17mation for policymakers. Utilizing this data could aid in developing policies for effective18agroecology.19

Author Contributions: H.N.: conceptualization; data curation; formal analysis; funding acquisition;20investigation; methodology; visualization; writing – original draft. S.O.: funding acquisition; investigation; supervision; writing – review and editing. All authors have read and agreed to the published version of the manuscript.21

Funding: This research was funded by JST SPRING Grant Number JPMJSP2110, MEXT/JSPS KA-24KENHI Grant Number 19K12444, and Sompo Environment Foundation.25

1

2

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: The authors are grateful to the reviewers and the editor for helpful comments to improve the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

- International Atomic Energy Agency Greenhouse Gas Reduction Available online: https://www.iaea.org/topics/greenhouse-gasreduction (accessed on 24 August 2023).
- 2. Goetzberger, A.; Zastrow, A. On the Coexistence of Solar-Energy Conversion and Plant Cultivation. *Int. J. Sol. Energy* **1982**, *1*, 55–69, doi:10.1080/01425918208909875.
- 3. MAFF. Available online: https://www.maff.go.jp/j/nousin/noukei/totiriyo/attach/pdf/einogata-2.pdf (accessed on 3 April 2023).
- 4. Wezel, A.; Herren, B.G.; Kerr, R.B.; Barrios, E.; Gonçalves, A.L.R.; Sinclair, F. Agroecological Principles and Elements and Their Implications for Transitioning to Sustainable Food Systems. A Review. *Agron. Sustain. Dev.* **2020**, *40*, 40.
- 5. Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining Solar Photovoltaic Panels and Food Crops for Optimising Land Use: Towards New Agrivoltaic Schemes. Renewable Energy 2011, 36, 2725–2732.
- 6. MAFF. Available online: https://www.maff.go.jp/j/study/attach/pdf/nouti_housei-27.pdf (accessed on 12 May 2023).
- 7. Statistics Bureau of Japan. Available online: https://www.stat.go.jp/data/kokusei/2020/kekka.html (accessed on 6 July 2023).
- Kansai Bureau of Economy, Trade and Industry. Available online: https://www.kansai.meti.go.jp/E_Kansai/page/20230105/ 02.html (accessed on 24 August 2023).
- 9. Chiba prefecture. Available online: https://www.pref.chiba.lg.jp/noushin/documents/taisaku-manual-rvsd3.pdf (accessed on 18 July 2023).
- 10. Scognamiglio, A. "Photovoltaic Landscapes": Design and Assessment. A Critical Review for a New Transdisciplinary Design Vision. *Renew. Sustain. Energy Rev.* **2016**, *55*, 629–661.
- 11. Yoichi, F.; Yoshifumi N.; Yasuhiro, H.; Osamu, K.; Noboru, Y. Influence of Shading Treatment on Growth and Yield of Paddy Rice and Soybean with the Objective of Solar Sharing. *The Hokuriku Crop Sci.* **2019**, *54*, 22–27.
- 12. MAFF. Available online: https://www.maff.go.jp/j/tokei/kekka_gaiyou/sakumotu/sakkyou_kome/mame/r3/mame/index.html (accessed on 22 August 2023).
- 13. MAFF. Available online: https://www.maff.go.jp/j/tokei/porigon/ (accessed on 13 February 2023).
- 14. JAXA High-Resolution Land Use and Land Cover Map of Japan Available online: https://www.eorc.jaxa.jp/ALOS/en/dat aset/lulc/lulc_v2111_e.htm (accessed on 18 August 2023).
- Ministry of Land, Infrastructure, Transport and Tourism. Available online: https://nlftp.mlit.go.jp/ (accessed on 3 July 20 23).
- 16. Geospatial Information Authority of Japan. Available online: https://fgd.gsi.go.jp/download/menu.php (accessed on 3 Jul y 2023).
- 17. MOE. Available online: https://www.renewable-energy-potential.env.go.jp/RenewableEnergy/index.html (accessed on 18 May 2023).
- 18. NEDO. Available online: https://appww2.infoc.nedo.go.jp/appww/monsola_map.html (accessed on 3 July 2023).
- 19. MAFF. Available online: https://www.e-stat.go.jp/stat-search/files?stat_infid=000040068742 (accessed on 23 August 2023).
- 20. MAFF. Available online: https://www.maff.go.jp/j/nousin/noukei/totiriyo/attach/pdf/einogata-1.pdf (accessed on 11 Septem ber 2023).
- 21. MOE. Available online: http://chiikijunkan.env.go.jp/manabu/bunseki/ (accessed on 23 August 2023).
- 22. MAFF. The Situation Concerning Soybeans Available online: https://www.maff.go.jp/j/seisan/ryutu/daizu/attach/pdf/index-1.pdf (accessed on 28 August 2023).
- 23. Sato, H.; Mitra, B.K.; Dasgupta, R.; Hashimoto, S. Assessment of Alternative Land Resource Utilization towards Net-Zer 44 o and Regional Revitalization through the Circulating and Ecological Sphere in Depopulated City Regions in Japan: A Case Study of Hachinohe City Region. *Sustainability Sci.* 2023, doi:10.1007/s11625-023-01388-z. 46
- Hondo, H.; Moriizumi, Y. Employment Creation Potential of Renewable Power Generation Technologies: A Life Cycle 47 Approach. Renewable Sustainable Energy Rev. 2017, 79, 128–136.
- MAFF Statistics on Agriculture, Forestry and Fisheries Available online: http://www.machimura.maff.go.jp/machi/map/ma
 p1.html (accessed on 23 August 2023).
- 26. MOE. Available online: https://www.env.go.jp/policy/local_keikaku/tools/karte.html (accessed on 18 June 2023).
- Ministry of Internal Affairs and Communications. Available online: https://www.soumu.go.jp/iken/zaisei/R03_chiho.html (accessed on 2 August 2023).

1

2

3

4

5

6

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31 32

33

34

35

36

37

38

39

40

41

42

43