Exploring the Influence of V₂O₅ Content on the Mechanism of Electrical Transport in the Na₂O-V₂O₅-Nb₂O₅-P₂O₅ Glass System: A Perspective through Model-Free Scaling Procedures

Sara Marijan¹, Teodoro Klaser¹, Petr Mošner², Ladislav Koudelka², Željko Skoko³, Jana Pisk⁴, Luka Pavić¹

¹Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
²Faculty of Chemical Technology, University of Pardubice 53210 Pardubice, Czech Republic
³Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, Zagreb, Croatia
⁴Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia

Sodium-vanadium-phosphate-based materials have garnered significant interest as cathodes for highrate sodium-ion batteries, owing to their stable framework, minimal volume change, thermodynamic stability, and excellent sodium storage capacity with fast ion transport kinetics¹. Furthermore, as these materials consist of both alkali and transition metal (TM) ions, which can exist in various oxidation states (V^{4+} , V^{5+}), these systems can exhibit the mixed ionic-polaronic conduction mechanism. Such feature has proven to be highly effective in facilitating the intercalation and deintercalation of alkali ions². Another crucial property of cathode materials is thermal stability which can be significantly enhanced by incorporating metal oxides such as Nb₂O₅³. Based on this premise, the current study focuses on investigating the electrical properties of glasses within the Na₂O-V₂O₅-Nb₂O₅-P₂O₅ system. The P_2O_5 component is gradually replaced by Nb_2O_5 while maintaining constant Na_2O and V_2O_5 content. By varying the concentration of V_2O_5 (10 and 25 mol%), the influence of its content on the electrical transport mechanism is examined, enabling the evaluation of its possible polaronic contribution. Solid-state impedance spectroscopy (SS-IS) is employed to examine electrical transport across a wide frequency (0.01 Hz to 1 MHz) and temperature (-90 °C to 240 °C) range and the conductivity spectra are studied in detail using two model-free scaling procedures, namely Summerfield and Sidebottom scaling. The successful construction of conductivity master curves for all glasses with lower V_2O_5 content (10 mol%) validates the time-temperature superposition (TTS) and confirms a purely ionic conduction mechanism, indicating that V₂O₅ does not contribute to electrical conductivity via a polaronic mechanism. However, master curves cannot be obtained for glasses with higher V₂O₅ (25 mol%) and low Nb₂O₅ content (0 and 5 mol%), suggesting the presence of mixed ionicpolaronic conductivity with a dominant polaronic contribution. Furthermore, with the addition of Nb_2O_5 above 10 mol%, the ionic conductivity mechanism prevails. The findings of this study provide valuable insights into the mixed-conductive glass system and role of V_2O_5 and/or Nb₂O₅, and demonstrate the ability to tune the mechanism of electrical conductivity by adjusting the content of oxide glass and its ratio. Nb₂O₅ content.

ACKNOWLEDGMENTS

This work is supported by the CSF under the projects IP-2018-01-5425 and DOK-2021-02-9665.

- 1. Wang, C. *et al.* A multiphase sodium vanadium phosphate cathode material for high-rate sodium-ion batteries. *J. Mater. Sci. Technol.* **66**, 121–127 (2021).
- 2. Wang, C. & Hong, J. Ionic/electronic conducting characteristics of LiFePO4 cathode materials. *Electrochem. Solid-State Lett.* **10**, A65 (2007).
- 3. Getachew, B., Ramesh, K. P. & Honnavar, G. V. Nickel ferrite doped lithium substituted zinc and niobo vanadate glasses: thermal, physical, and electrical characterization. *Mater. Res. Express* **7**, 095202 (2020).