
Evaluating the effect of asphalt binder and biochar based Geopolymer Composite on the Permanent Deformation Resistance of Asphalt Concrete employing response surface method

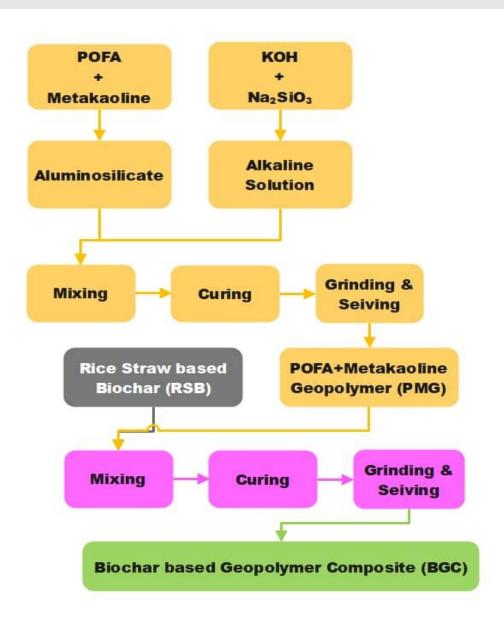
Research Background

- Million tones of waste are generated yearly, and its potential is not fully harnesses
- To help improve asphalt binder's and asphalt mixtures characteristics, several experts have turned to waste materials
- Permanent deformation, also known as rutting, transpires when the asphalt pavement develops excessive and permanent distortion because of frequent traffic loading, eventually leading to decreased road safety
- The recent interest in the use of composite is a relatively new phenomenon with little study on the topic of modifying asphalt binder with waste material-based composites

Problem Statement

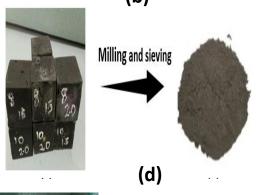
Waste disposal crisis due to the non-biodegradability nature of waste material because they are polluting the oceans, littering the landfills, generation of toxic fumes

The present exposure to excessive tire pressures, and traffic volumes which make the conventional materials unable to withstand these challenges.


The cost, practicality and environmental issues of the current available bitumen modifier mostly chemical.

Objectives

The goal of this study is to determine the influence and interaction of the asphalt binder and biochar-based geopolymer composite as a sustainable modifier on asphalt concrete's permanent deformation resistance by employing the response surface method.


Methodology Flow Chart

(a) (c)

(e)

Results and discussions cont'd

Table 1. Table: study design of experiments matrix

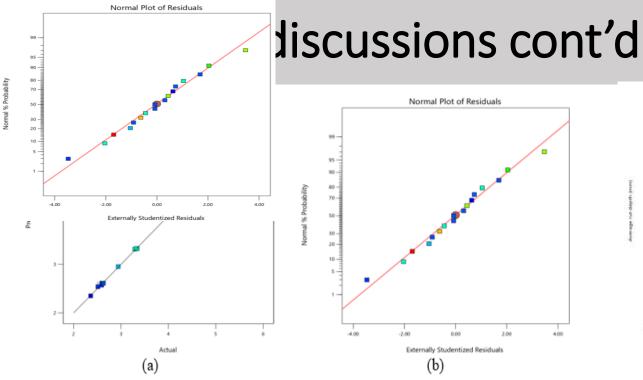

Run		Response		
no.	Biochar	Geopolymer	Asphalt binder	ARD (mm)
1	4	2	6	2.59
2	0	4	5	3.34
3	0	2	6	3.29
4	2	0	4	4.89
5	2	2	5	2.59
6	2	4	6	2.36
7	2	4	4	4.39
8	2	2	5	2.62
9	4	2	4	4.02
10	0	0	5	4.43
11	2	2	5	2.61
12	0	2	4	5.47
13	2	0	6	3.32
14	4	0	5	2.94
15	2	2	5	2.63
16	2	2	5	2.61
17	4	4	5	2.51

Table 2. ANOVA and fit statistics for the study ARD model

Variable	SS	DF	MS	F-value	P-value	Observation		
Type of model	Quadrati	c						
Model	14.71	9	1.63	2309.20	< 0.0001	Significant		
A-Biochar	2.50	1	2.50	3528.41	< 0.0001	-		
B-Geopolymer	1.11	1	1.11	1568.18	< 0.0001			
C-Asphalt binder	6.50	1	6.50	9179.84	< 0.0001			
AB	0.1089	1	0.1089	153.84	< 0.0001			
AC	0.1406	1	0.1406	198.66	< 0.0001			
BC	0.0529	1	0.0529	74.73	< 0.0001			
A ²	0.6661	1	0.6661	941.05	< 0.0001			
B^2	0.3670	1	0.3670	518.53	< 0.0001			
C^2	2.92	1	2.92	4124.96	< 0.0001			
Residual	0.0050	7	0.0007					
Lack of Fit	0.0041	3	0.0014	6.17	0.0555	Not significant		
Pure Error	0.0009	4	0.0002			J		
Cor Total	14.72	16						
Fit statistics								
R2		0.997		Standard o	leviation	0.0266		
Adjusted R2		0.992		Mean		3.33		
Predicted R2		0.995		Adequate	precision	153.8		

The derived model for ARD is represented by equation

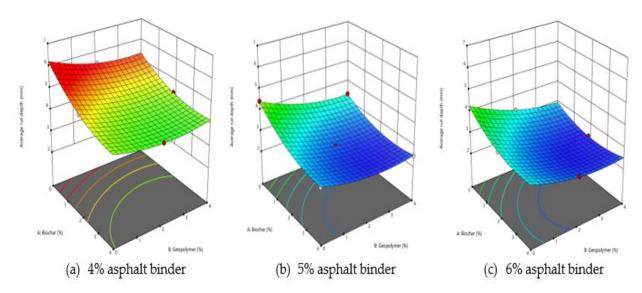

$$ARD = 2.612 - 0.559A - 0.373B - 0.901C + 0.165AB + 0.188AC - 0.115BC + 0.295B^{2} + 0.833C^{2}$$
 (1)

Figure 1. Degree of agreement between predicted and experimental results

Table 3. Verification of optimized findings

Input Variable	% Content	ARD valu	% Error	
		RSM predicted	Experimental	
Biochar	3.22			
Geopolymer	1.81	2.27	2.36	3.96
Asphalt content	5.4			

Figure 2. 3D synergetic influence of biochar and geopolymer on permanent deformation at different asphalt binder content

As observed from the 3D contour lines with elliptical shapes, indicating a strong interaction between the input variables. This implies that all the variables considerably impact the model's response. The increased PDR in the asphalt concrete can be attributed to the asphalt binder's improved viscoelasticity and stiffness due to the incorporation of the composite binder. These contribute to a more efficient aggregate covering and promote a well-connected aggregate binder structure, which improves asphalt concrete permanent deformation resistance

Conclusions

Based on the study's findings, the following key findings can be drawn:

- The incorporation of biochar-based geopolymer composite as a modifier significantly impacted the rut depth resistance of asphalt concrete.
- The RSM models used in this study demonstrated a high degree of correlation, predictability, and level of agreement between predicted and experimental outcomes, as proven by high R2 values and appropriate accuracy (>4.0), indicating their reliability and efficacy for exploring the model space.
- The RSM optimization identified the optimum content of biochar, geopolymer, and asphalt binder (at 3.22%, 1.81%, and 5.4% respectively), with a percentage error of less than 5% between the RSM-predicted values and experimental data.

THANK YOU...!

