

The 9th International Electronic Conference on Medicinal Chemistry (ECMC 2023) 01–30 November 2023 | Online

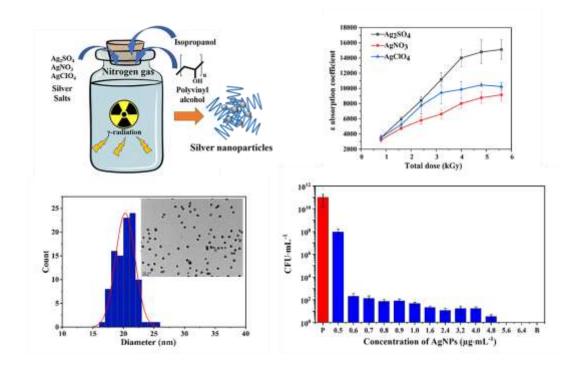
Colloidal Silver Nanoparticles Obtained via Radiosynthesis: Synthesis Optimization and Antibacterial Application

Chaired by Dr. Alfredo Berzal-Herranz and Prof. Dr. Maria Emília Sousa

Wenbo Liu¹, Mario Menéndez Miranda¹, Jesus Alfredo Godinez-Leon¹, Aisara Amanova², Ludivine Houel-Renault¹, Isabelle Lampre², Hynd Remita^{2,*}, and Ruxandra Gref^{1,*},

¹ Institut de Sciences Moléculaires d'Orsay, Université Paris-Saclay, Paris, France;

- ² Institut de Chimie Physique, Université Paris-Saclay, Paris, France
- * Corresponding author:hynd.remita@universite-paris-saclay.fr; ruxandra.gref@universite-paris-saclay.fr



01-30 November 2023 | Online

Colloidal Silver Nanoparticles Obtained via Radiosynthesis: Synthesis Optimization and Antibacterial Application

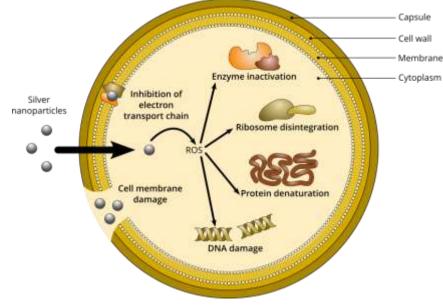
01-30 November 2023 | Online

Abstract:

Silver nanoparticles (AgNPs) with broad-spectrum antimicrobial properties are gaining increasing interest in fighting multidrug-resistant bacteria. Herein we describe the synthesis of AgNPs stabilized by polyvinyl alcohol (PVA) with high purity and homogeneous sizes using radiolysis. Solvated electrons and reducing radicals are induced from solvent radiolysis and no other chemical reducing agents are needed to reduce the metal ions. Another advantage of this method is that it leads to sterile colloidal suspensions, which can be directly used for medical applications. We systematically investigated the effect of the silver salt precursor on the optical properties, particle size and morphology of the resulting colloidal AgNPs. With Ag₂SO₄ precursor, the AgNPs displayed a narrow size distribution (20 \pm 2 nm). In contrast, AgNO₃ and AgClO₄ precursors lead to inhomogeneous AgNPs of various shapes. Moreover, the optimized AgNPs synthesized from Ag_2SO_4 were stable upon storage in water and phosphate-buffered saline (PBS) and were effective in inhibiting the growth of Staphylococcus. aureus (S. aureus) at a concentration of 0.6 μ g·mL⁻¹ and completely eradicated it at a concentration of 5.6 μ g·mL⁻¹. When compared with various conventional methods and other different strategies, the remarkable bactericidal ability against S. aureus of the AgNPs produced here opens up new avenues for further applications in medicine and other domains.

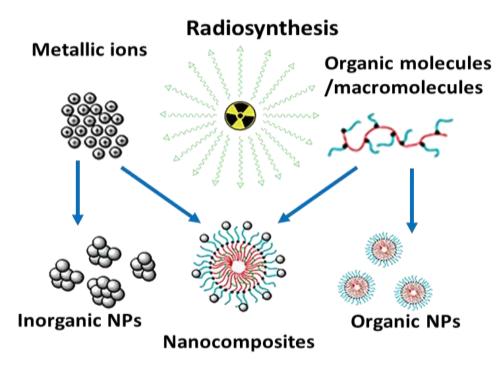
Keywords: Silver nanoparticles; radiosynthesis; antibacterial property; *S. aureus*; sterile colloidal suspensions

01-30 November 2023 | Online


Background and Objective

Q: Bacterial resistance caused by the widespread use of antibiotics.

A: Colloidal AgNPs with broad-spectrum antibacterial activity are employed to fight multidrug-resistant bacteria.


Mechanisms of silver's antibacterial properties: [1-2]

- A. AgNPs lead to direct damage to cell wall and cell membrane.
- B. AgNPs generate reactive oxygen species (ROS).
- C. The cell uptake of free silver ions is followed by disruption of protein production, DNA replication and enzyme activation.

01-30 November 2023 | Online

AgNPs Radiosynthesis

- Green, straightforward & environmentally friendly.
- Controlled synthesis of AgNPs without using toxic reducing agent like NaBH₄.
- Metal NPs with monodispersed in a fully reduced, highly pure and highly stable state.
- A powerful synthesis method at room temperature.
- > An unique method to obtain sterile formulations to be directly used in medical applications.

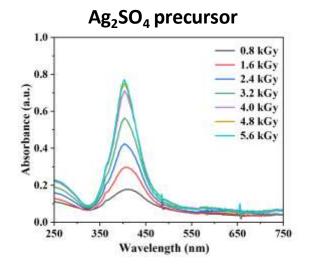
01-30 November 2023 | Online

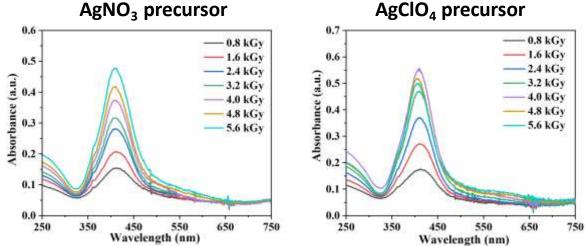
Synthesis Mechanism

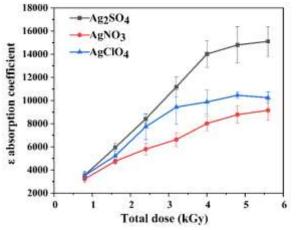
(a) Preparation of silver NPs precursor

(1) $H_2O \xrightarrow{\gamma-ray} \bar{e}_{aq}, H_3O, H^*, OH^*, H_2, H_2O_2, H_3O^+$ (2) $Ag^+ + \bar{e}_{aq} \longrightarrow Ag^0$ (3) $OH^* (or H^*) + (CH_3)_2CHOH \longrightarrow (CH_3)_2C^*OH + H_2O (or H_2)$ (4) $Ag^{++} (CH_3)_2C^*OH \longrightarrow [Ag(CH_3)_2C^*OH]^+$ $[Ag(CH_3)_2C^*OH]^+ + Ag^+ \rightarrow Ag^+_2 + (CH_3)_2CO + H^+$ (5) $Ag^0_m + Ag^0 \rightarrow Ag^0_{m+1}$ (6) $Ag^0_{m+1} + Ag^+ \rightarrow Ag^+_{m+2}$ (7) $Ag^+_{m+2} + \bar{e}_{aq} \rightarrow Ag^0_{m+2}$ (8) $Ag^0_m + Ag^0_n \rightarrow Ag^0_{m+n}$ (9) $PVA^* + PVA^* \rightarrow PVA-PVA$

Radiolysis of water (1); Radicals formation (1, 3); Nucleation (2, 4); Agglomeration (5–8); Aggregation Restriction (9) ^{[5][6]}

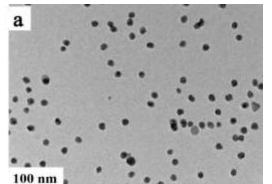

(b) The formation of AgNPs via radiosynthesis

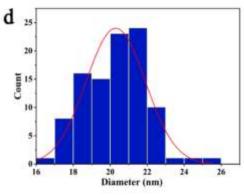



01-30 November 2023 | Online

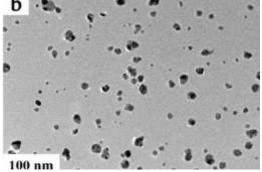
Synthesis Optimization of AgNPs

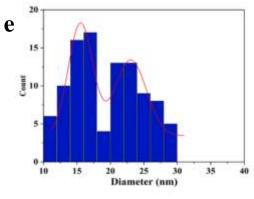
- Plasmon resonance absorption of silver cluster around 400 nm.
- > AgNPs are formed with increasing radiation dose.
- Full reduction of Ag+ ions into AgNPs when the absorbance reaches a plateau.
- \blacktriangleright Best results for AgNPs using Ag₂SO₄



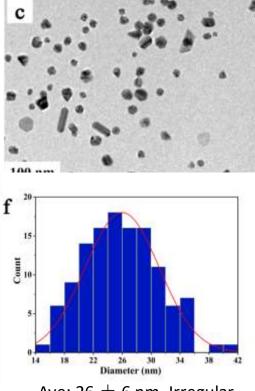

01-30 November 2023 | Online

Morphology and Size Distribution of AgNPs


Ag₂SO₄ precursor



Ave: 20 \pm 2 nm. Uniform; DLS size, 26 \pm 3 nm Zeta potential, -16 mV

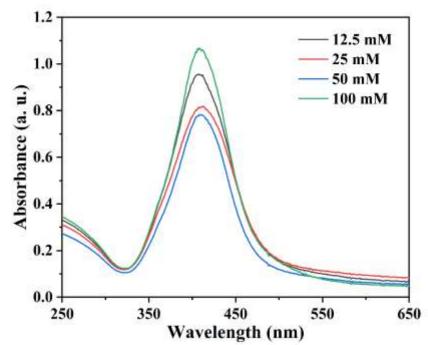

AgNO₃ precursor

Ave: 19 \pm 5 nm. Irregular

AgClO₄ precursor

Ave: 26 \pm 6 nm. Irregular

Different sizes and shapes are obtained, depending on the type of salt precursor, related to the crystal nucleation and growth rate.

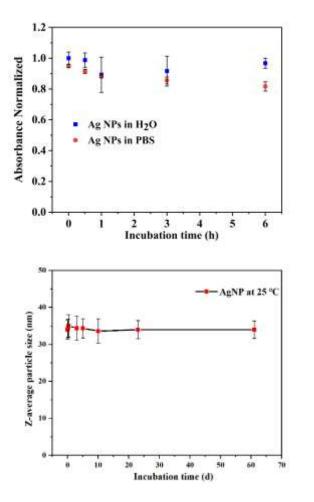

[6]]Pharmaceutics. 2023, 15, 1787.

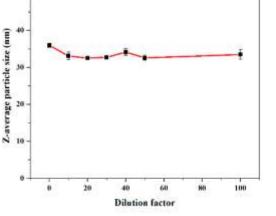
MDPI

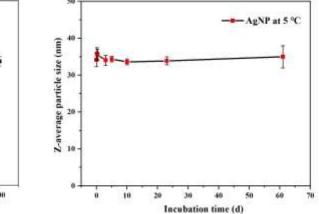
01-30 November 2023 | Online

Influence of Surfactant Concentration

PVA concentration


- > PVA concentration has a slight influence on NP formation.
- The optimal AgNPs are stabilized by the PVA with concentration of 100 mM.





01-30 November 2023 | Online

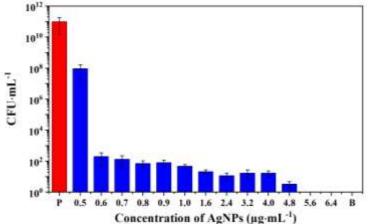
AgNPs' Stability Study

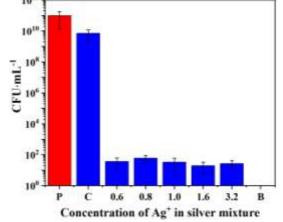
- The optimized AgNPs are good stable upon storage, either in water, or in PBS (10X) for short-term (6 h).
- The optimized AgNPs have good stability on the particle size in water for long-term (2 months).

01-30 November 2023 | Online

Antibacterial Study for AgNPs

S. aureus + AgNPs (0.5 µg·mL⁻¹)/ LB broth (Red circle)




S. aureus + AgNPs (0.6 µg·mL⁻¹)/ LB broth (Red circle)

S. aureus + AgNPs (5.6 µg·mL⁻¹)/ LB broth (Red circle)

Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against *S. aureus* are 0.6 and 5.6 μ g·mL⁻¹, respectively.

Conclusions

- AgNPs were obtained using three different precursors (Ag₂SO₄, AgNO₃, and AgClO₄)
- AgNPs (Ag₂SO₄, 2 mM) exhibit the best optical property, together with a uniform size distribution of (20 ± 2 nm).
- Conversely, AgNPs obtained with the other precursors have diverse morphologies.
- The optimized AgNPs are stable upon storage in water and PBS for short-term (6h) and long-term (2 months).
- > They have good antibacterial properties (*S. aureus*) : MIC of 0.6 μ g·mL⁻¹ and MBC of 5.6 μ g·mL⁻¹.

MDPI

01-30 November 2023 | Online

Acknowledgments

Supervisor

Prof. Ruxandra Gref

Team members

Dr. Mario Menéndez Miranda PhD. Jesus Alfredo Godinez Leon PhD. Tom Bourguignon PhD. Mengli Ding PhD. Killian Laguerre ENGR. Mathilde Audrey Pondy Bias

Microwave Technologies Consulting

drugs and

drug candidates

Prof. Hynd Remita Prof. Isabelle Lampre PhD. Aisara Amanova Dr. Ludivine Houel Renault

Collaborators

13

01-30 November 2023 | Online

Supplementary

Silver from	Method	Size data	Bacterial strain	MIC	MBC
Ag NPs - Myramistin	Chemical reduction	8.5 nm	S. Aureus INA 00761	5 μg·mL ⁻¹	-
Lignin-Ag NPs	Chemical reduction	~20 nm	S. Aureus MDR	10 µg·mL ⁻¹	10 μg·mL ⁻¹
			S. Aureus ATCC700788	5 µg·mL ⁻¹	10 µg·mL ⁻¹
PSS-Ag NPs	Chemical reduction	5 nm	S. Aureus ATCC29213	1.14 μg·mL ⁻¹	
Dendrimer-encapsulated-Ag NPs	Chemical reduction	3.33 nm	S. Aureus USA300	128 µg·mL ⁻¹	
Carboxy methyl cellulose-Ag NPs	Chemical reduction	5–15 nm	S. Aureus ATCC43300	60 µg∙mL ⁻¹	60 µg·mL ⁻¹
AgNPs-Tannic acid	Chemical reduction	4.69 ± 1.56 nm	S. Aureus ATCC 25923	8–16 µg·mL ⁻¹	16-32 µg·mL ⁻¹
Zeolite containing silver and zinc	Chemical reduction	ND	S. Aureus ATCC 25923	-	39 µg·mL ⁻¹
Ag NPs-Cotyledon orbiculate	Biosynthesis reduction	106-137 nm ± 2	S. Aureus ATCC 25923	20 µg·mL ⁻¹	40 µg⋅mL ⁻¹
Ag NPs-A. esculentus flower extract	Biosynthesis reduction	5.52–24.65 nm; average 18.24	S. Aureus ATCC29213	85 µg∙mL ⁻¹	90 µg∙mL-1
Ag NPs-lyophilized hydroalcoholic extract of S. Cumini seeds	Biosynthesis reduction	36.25-77.01 nm	S. Aureus ATCC25923	125 μg·mL ⁻¹	-
Ag NPs-Artemisia haussknechtii leaf aqueous extract	Biosynthesis reduction	10.69 nm	S. aureus ATCC 43300	10 μg·mL ⁻¹	60 µg∙mL ⁻¹
AgNPs-Sucrose	Saccharide-based reduction	25 ± 5 nm	S. Aureus	0.057 µg⋅mL ⁻¹	0.23 µg·mL ⁻¹
AgNPs- Soluble starch	Saccharide-based reduction	25 ± 5 nm	S. Aureus	0.34 µg/mL	1.62 µg/mL
Ag NPs-PVA(72000)	γ-Radiation reduction	~28 nm	S. Aureus	.70	
AgNPs-Chitosan-derived CQDs	γ-Radiation reduction	25 nm	S. Aureus	100 µg·mL ⁻¹	1940 1940
AgNPs-PVA(1700-1800)	γ-Radiation reduction	31.2-50.8 nm	S. Aureus ATCC29213		-
AgNPs-PVA(30000 ~ 70000) (this work)	γ-Radiation reduction	20 nm	S. Aureus ATCC 27217	0.6 µg∙mL ⁻¹	5.6 µg·mL ⁻¹