

01-30 November 2023 | Online

Beta-blockers as potential adjuvants in chemotherapy against melanoma: an *in vitro* study

Chaired by **Dr. Alfredo Berzal-Herranz** and **Prof. Dr. Maria Emília Sousa**

Laura Rama^{1,*}, Mónica Almeida², Carolina Frazão², Maria de Lourdes Pereira³, Miguel Oliveira²

¹ Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal

² Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal

³ Department of Medical Sciences, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal

* Corresponding author: laurasofiarama@ua.pt

Beta-blockers as potential adjuvants in chemotherapy against melanoma: an *in vitro* study

A375 melanoma cells

Cell viability MTT and resazurin assays

Complined exposure
Cisplatin + carvedilol
Cisplatin + propranolol
Carvedilol + propranolol
Cisplatin + metoprolol

Interaction of drugs

01-30 November 2023 | Online

Abstract: Melanoma is an aggressive type of skin cancer, with the number of cases expected to increase in the future. The available treatments show low efficiency highlighting the need to develop new therapies to increase the survival of the patients. Beta-blockers, drugs already known and used for heart conditions; have shown anti-cancer properties and potential to be valuable in conjugation with chemotherapy. This study aimed to evaluate, in vitro, their potential for cancer treatment. A375 cells (melanoma cell line) were exposed to non-selective blockers (carvedilol and propran-olol), β 1 selective blockers (atenolol and metoprolol), and antineoplastics drugs (cisplatin and 5- fluorouracil), and viability assessed at 3 timepoints. Selective beta-1 blockers had no significant effects on cell viability. However, the other tested pharmaceuticals affected cell viability allowing the determination of median lethal concentrations (LC50) at 72h and a toxicity ranking: cisplatin (2.46 (1.87 – 3.38), 5-fluorouracil (4.77 (4.48 – 5.07)), carvedilol (16.91 (15.47 - 18.99)) and propranolol (58.03 (57.08 - 59.11)). Carvedilol and cisplatin were, respectively, the most toxic beta-blocker and antineoplastic. Following these results, a combined exposure of beta-blockers and antineoplastics was performed: cisplatin with metoprolol, propranolol, and carvedilol and also paired both nonselective beta-blockers. The results so far support the potential use of non-selective β blockers as adjuvants of chemotherapy as a melanoma treatment.

Keywords: melanoma; cancer cell lines; beta-blockers; drug repurposing; combined exposure

01-30 November 2023 | Online

Introduction

Melanoma

Mutation in the DNA of melanocytes causes abnormal growth

01-30 November 2023 | Online

Introduction

Epidemiology

2020 324 635 new cases 57 043 deaths

Source: Globocan

Risk factors

01-30 November 2023 | Online

Introduction

Drug repurposing

A drug that already exists might have a new therapeutic use.

Beta-blockers are used to treat heart diseases

They connect to beta-adrenergic receptors in cells

The 9th International Electronic Conference on Medicinal Chemistry 01-30 November 2023 | Online

Evaluate the effects of different beta-blockers and antineoplastics in melanoma cancer cells in individual and combined exposure

01-30 November 2023 | Online

Experimental design

Biological model

A375 melanoma epithelial cells

01-30 November 2023 | Online

Experimental design

Individual exposures

Timepoints: 24h 48h 72h

Viability assays: MTT and resazurin

3 replicates

Blank control Negative control Concentrations

01-30 November 2023 | Online

Experimental design

Combined exposures

\geq	0	0.25	0.5	0.75	1
0					
0.25					
0.5					
0.75					
1					

Timepoints: 48h

1 toxic unit = LC_{50} of each pharmaceutical

Viability assays: MTT

3 replicates for each condition

01-30 November 2023 | Online

Experimental design

Data Analysis

Viability expressed as percentage of control

Non-linear regression (4 parameters)

LCs with confidence intervals

Two-Way ANOVA

01–30 November 2023 | Online

Results and discussion

Atenolol

No significant effect

01-30 November 2023 | Online

Results and discussion

Metoprolol

MTT

Resazurin

No significant effect

Cisplatin

Sensitivity comparation

Atenolol and metoprolol had no significant effect

01-30 November 2023 | Online

Results and discussion

Synergistic effect

01-30 November 2023 | Online

Results and discussion

Cisplatin + Propranolol

Highest propranolol concentration had a bigger influence

Synergistic effect

01-30 November 2023 | Online

Results and discussion

01-30 November 2023 | Online

Results and discussion

Cisplatin + Metoprolol

Antagonistic effect

01-30 November 2023 | Online

Conclusion

Non-selective beta blockers

help increase cisplatin toxicity

Metoprolol interacts with cisplatin and diminishes its effect

01-30 November 2023 | Online

Acknowledgments

Thanks are due to FCT/MCTES for the financial support to the project NanoPlanet (2022.02340.PTDC), and CESAM (UIDP/50017/2020 + UIDB/50017/2020 + LA/P/0094/2020) through national funds.

