

The 9th International Electronic Conference on Medicinal Chemistry (ECMC 2023) 01–30 November 2023 | Online

Alkyl nitrobenzamides as potential DprE1 inhibitors for the treatment of tuberculosis

Chaired by **Dr. Alfredo Berzal-Herranz** and **Prof. Dr. Maria Emília Sousa**

João Pais¹, Olha Antoniuk¹, Tiago Delgado¹, David Pires², Elsa Anes^{2,3}, Luís Constantino^{1,3,*}

¹Medicinal Organic Chemistry, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal

²Host-Pathogen Interactions, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal

³Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal

* Corresponding author: constant@ff.ul.pt

imed ** Research Institute for Medicines

1

01-30 November 2023 | Online

Abstract: Tuberculosis (TB) remains a formidable global health challenge, with an annual reporting of approximately 10 million new cases. The escalating concern revolves around multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), which present barriers to effective disease control due to their resistance to both first-line and second-line drugs. One of the most promising new targets for TB treatment is the DprE1-DprE2 complex, with ongoing discoveries of novel inhibitors. In prior unrelated research, our group showed that while studying benzoic acid derivatives, the nitro-substituted analogues exhibited interesting activity against Mycobacterium tuberculosis (Mtb). This motivated us to synthesize analogous amide derivatives, and our findings show substantial antimycobacterial activity, on par or even greater than known TB drugs. Dinitrobenzamides represent a class of established DprE1 inhibitors, but its alkyl derivatives, akin to the compounds under discussion, were completely overlooked in available literature. Building upon our prior insights, which indicates that 8-carbon atom alkyl derivatives yielded the most potent compounds, we synthesized a series of amide derivatives and, indeed, our study shows 8-carbon atom alkyl amides amongst the most efficacious. This study extensively explores a series of nitrosubstituted benzoic amide alkyl derivatives, elucidating the influence of the number and position of nitro-groups on their antitubercular activity. Moreover, we conducted supplementary biological and computational assays to assess the potential targeting of DprE1 by these compounds, as well as their efficacy in an infection model, all of which will be presented and discussed herein.

Keywords: Tuberculosis; Nitrobenzamides; DprE1;

The 9th International Electronic Conference on Medicinal Chemistry 01-30 November 2023 | Online

Alkyl nitrobenzamides as potential DprE1 inhibitors for the treatment of tuberculosis

01-30 November 2023 | Online

Introduction

World Health Organization

WHO End TB Strategy: 2025 milestones

Global tuberculosis report 2022. Geneva: World Health organization; 2022. ISBN 978-92-4-006172-9

01-30 November 2023 | Online

Past work

João P. Pais et all, Microorganisms **2023**, *11*(4), 969; <u>doi.org/10.3390/microorganisms11040969</u>

01-30 November 2023 | Online

Summary

Compound library Synthesis

01–30 November 2023 | Online

Results and Discussion: Synthesis

01–30 November 2023 | Online

Results and Discussion: Antitubercular activity

			MIC	MBC	
Numbe	r X =	R =	(µg/mL)	(µg/mL)	
1		C_4H_9	256	256	H H
2	Н	C_6H_{13}	64	64	Compound 12
3		C_8H_{17}	32	32	$NO_{2} \qquad MIC = 0.016 \text{ ug/m}$
4		$C_{12}H_{25}$	>256	>256	
5	4-NO ₂	C_4H_9	256	256	MBC = 0.016 μg/mL
6		C_6H_{13}	32	64	
7		C_8H_{17}	128	256	O II
8		$C_{12}H_{25}$	512	>1024	O_2N \wedge \wedge \wedge \wedge
9		C_4H_9	0.5	0.5	$- \Upsilon \Upsilon \Upsilon $
10		$C_{6}H_{13}$	0.031	0.031	
11		C_8H_{17}	0.016	0.031	$\langle \rangle $ $\langle \rangle$ $\langle \rangle$
12	3-NO ₂ -5-NO ₂	$C_{10}H_{21}$	0.016	0.016	\dot{NO}_2 DNB1
13		$C_{12}H_{25}$	0.031	0.063	$MIC = 0.016 \mu g/ml$
14		$C_{14}H_{29}$	0.125	0.25	$MPC = 0.010 \mu_{\rm B}/mL$
15		$C_{16}H_{31}$	2	2	$MBC = 0.016 \mu g/mL$
16		C_4H_9	2	2	Antitub argular activity
17		$C_{6}H_{13}$	0,5	0,5	Antitubercular activity
18	3-NO ₂ -5-CF ₃	C_8H_{17}	0.063	0.063	matching the best of known
19		$C_{10}H_{21}$	0.5	0.5	DNRsl
20		$C_{12}H_{25}$	0.5	0.5	

01-30 November 2023 | Online

Results and Discussion: Infection model

Infection model: Macrophage cells infected with M. bovis

mycobacterial cell count (CFUs) after X days of treatment

	Days								
Compounds	0	1	3	5	7				
10	22000	2667	240	113	13				
11	22000	12067	34667	49333	52000				
12	22000	7067	3667	1100	653				
13	22000	5267	1253	593	27				
14	22000	23400	53333	94000	105333				
18	22000	10267	114000	120667	91333				
INH	22000	2800	347	220	0				
Control*	22000	17667	152667	171333	164000				

* Infected macrophages without treatment

01-30 November 2023 | Online

Results and Discussion: Infection model

Infection model: Macrophage cells infected with M. bovis

Results and Discussion: Multiple species assay

Different bacterial strains have different resistances associated to DprE1 inhibition

Compounds	M. tuberculosis		M. bovis BCG		M. smegmatis		M. avium	
·	MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC
DNB1*	0.031	0.031	0.063		0.5	1	32	>128
DNB2*	0.031	0.063	0.125		0.5	1	64	>128
INH	0.05	0.05	0.025	0.025	8	>25.6	>25.6	>25.6
4	32	32	32	32	128	128	128	256
9	128	256	128	512	1024	1024	1024	1024
12	0.5	0.5	0.5	1	4	4	64	512
13	0.063	0.063	0.25	0.25	1	1		
14	0.016	0.031	0.016	0.016	0.25	4	512	>512
15	0.016	0.016	0.063	0.063	1	1	>512	>512
16	0.031	0.063	0.083	0.166	0.667	>2,66	>512	>512
17	0.125	0.25	0.25	0.25	1	4		
18	2	2	2	4	32	>64		

Results and Discussion: Multiple-strains assay

How much the MIC values increase in comparison to the values obtained for *M. tuberculosis*?

Results and Discussion: Multiple-strains assay

How much the MIC values increase in comparison to the values obtained for *M. tuberculosis*?

Results and Discussion: Multiple-strains assay

How much the MIC values increase in comparison to the values obtained for *M. tuberculosis*?

01–30 November 2023 | Online

Results and Discussion: Computational studies

Docking approach

01–30 November 2023 | Online

Results and Discussion: Computational studies

Docking approach

Conclusions

Synthesis and antitubercular activity of dinitrobenzamide alkyl derivatives Accessible two-step synthesis with good yields

Optimal alkyl chain length range (8-10 carbon atoms)

Best-in-class antitubercular activities

Infection model

Bacterial death induced with an efficacy comparable to INH

Mode of action

Antibacterial activity profile to multiple strains similar to known DprE1 inhibitors

Docking studies show similar interaction profile to known DprE1 inhibitors

Distance of nitro-groups to FAD and Cys387 residue indicative of possible prereactive complex

01-30 November 2023 | Online

Acknowledgments

This research was funded by Fundação para a Ciência e Tecnologia (FCT), grant PTDC/SAU-INF/28080/2017 and Grant EXPL/SAU-INF/1097/2021. It also received financial support from FCT (via ImedULisboa) from projects UIDB/04138/2020 and UIDP/04138/2020

