

DEVELOPMENT OF CO-PROCESSED EXCIPIENTS FOR FAST-DISSOLVING TABLETS OF CARVEDILOL BY MULTIVARIATE ANALYSIS AND QBD

Swarnali Dutta^{1*}, Biswajit Basu², Biswatrish Sarkar¹

Department of Pharmaceutical Sciences and Technology, BIT Mesra, Ranchi, Jharkhand – 835215, India¹. Department of Pharmaceutical Technology, School of Health & Medical Sciences, Adamas University, Kolkata, West Bengal, 700126² Presenter Email: <u>swarnalidutta89@gmail.com</u> Corresponding Email: <u>bbasu.pharma@gmail.com</u>; biswajit.basu1@adamasuniversity.ac.in

ABSTRACT:

Purpose: Direct compression is a mostly used and required process in the pharmaceutical industry. The coprocessing is the most widely explored method for the preparation of directly compressible excipients. The present research work was targeted to develop a novel directly compressible co-processed excipient to prepare fast disintegrating tablets of Carvedilol. Methods: From the preliminary trials, Lactose was selected as a directly compressible excipient and sodium starch glycolate was used as a super disintegrant. PEG 4000 was used as the binder from the preliminary batches. A melt agglomeration technique was selected to prepare the suitable co-processed excipient. Coprocessed excipient was optimized by a central composite design where the concentration of binder (X1) and concentration of disintegrant (X2) was selected as independent variables from the preliminary studies. Carr's index, wetting time, disintegration time, and Friability were selected as dependent variables as they were having the highest effect on co-processed excipient and tablet properties. **Results:** The optimized coprocessed excipient was characterized by Kawakita's and Kuno's analysis, Heckel plot analysis, granular friability index, and lubricant sensitivity ratio. Results of dilution potential revealed that poorly compressible drug; Carvedilol was sufficiently incorporated into co-processed excipient for the preparation of fast disintegrating tablets. An in-vitro dissolution study showed faster disintegration of the drug compared to the conventional tablets. Instrumental studies like FT-IR and DSC proved the compatibility of various materials with each other. Conclusion: The present investigation underlines the fact that co-processing may be adopted for the development of directly compressible adjuvant for the use in pharmaceuticals. **<u>KEYWORDS</u>**: Co-processed excipients, Fast dissolving tablet, Carvedilol, Quality by design (QBD), Multivariate Analysis.

INTRODUCTION:

In present years scientists have established that single-component excipients do not always provide the necessary performance to tolerate pharmaceutical certain active ingredients to be formulated or manufactured acceptably. Hence, there is a requirement to have with multiple excipients characteristics build into them such as enhanced flow, low/no moisture sensitivity, superior compressibility and quick disintegration ability.

METHODOLOGY: Analytical method Preparation of Standard • **Stock Solution of** Carvedilol Calibration Curve of Carvedilol **Preformulation studies**

PRELIMINARY STUDIES:

- Selection of a method for preparation of co-** processed excipient
 - Wet granulation, Melt agglomeration, Solvent evaporation
 - Selection of binder and optimization of binder in co-processed excipient
- ** **Optimization of disintegrant in co-processed** excipient

122		-		De la sela ral de la sela sela sela sela sela sela sela	and the second sec								
Batch		Methods			Directly compressible excipient	•	Directl compress excipient (y ible (gm)	Disi	integrant Di		ntegrant gm)	
B ₁	B ₁₃	B ₂₅	WG	MA	SE						CCS	().15
2	B ₁₄	B ₂₆	WG	MA	SE	MCC		4.35			СР	().15
B ₃	B ₁₅	B ₂₇	WG	MA	SE						SSG (0.20
B ₄	B ₁₆	B ₂₈	WG	MA	SE	LM		4.35			CCS).15
B ₅	B ₁₇	B ₂₉	WG	MA	SE						СР ().15
B ₆	B ₁₈	B ₃₀	WG	MA	SE						SSG		0.20
B 7	B ₁₉	B ₃₁	WG	MA	SE	DCP		4.35			CCS	0.15	
B ₈	B ₂₀	B ₃₂	WG	MA	SE					СР		0.15	
B 9	B ₂₁	B ₃₃	WG	MA	SE	7				SSG		0.20	
10	B ₂₂	B ₃₄	WG	MA	SE					CCS		0.15	
11	B ₂₃	B ₃₅	WG	MA	SE	MANNITOL	0	4.35		СР		0.15	
12	B ₂₄	B ₃₆	WG	MA	SE					SSG		0.20	
WG: Wet granulation; MA: Melt agglomeration; SE: Solvent evaporation													
E	cipie	nts	AR	ngle of epose*		Carr's Index (%)*	18	lausner's Ratio*	Bulk d	ensity mL)	Tapped de (gm/ml	ed density Melting m/mL) point (°C	
С	arvedi	101	47	84+0.63	3	34 90+1.78	1	44+0.06	0.36±	0.005	0.55±0.0)15	115

Quality by design approach for preparation of Co-processed excipients:

- **Quality Target Product Profile of Co-processed excipients**
- □ Risk analysis; Risk identification by Ishikawa diagram

 \mathbf{A} Y is the dependent variables, \mathbf{b}_0 is arithmetic mean response of the nine runs, \mathbf{b}_1 is the estimated coefficient for the factor X_1 . The main effects (X_1 and X_2) represent the average result of changing one factor at a time from its low to high value. The interaction terms (X_1X_2) show how the response changes when two factors are simultaneously changed. The polynomial terms $(X_1^2 \text{ and } X_2^2)$ are included to investigate non-linearity. Experimental Design; The data were subjected to 3-D response surface plot in Design-Expert[®]9.0.2.0 (a software developed by Stat-Ease)

$\mathbf{Y} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{X}_1 + \mathbf{b}_2 \mathbf{X}_2 + \mathbf{b}_{12} \mathbf{X}_1 \mathbf{X}_2 + \mathbf{b}_{11} \mathbf{X}_1^2 + \mathbf{b}_{22} \mathbf{X}_2^2$

(a) Factor and level of the Circumscribed Central Composite Design									
Variabl	e	Actual level							
(ur luo)		-α	-1	0	1	A			
X_1 = concentration	n of binder	2	3.91	8.5	13.09	15			
$X_2 = concentr$ disintegra	ation of ate	2	3.18	6	8.82	10			
(b) Experimental plan in central composite design									
Batch Code	Variabl	e levels in Cod	led form	Actual value of variable					
	X_1		X ₂	X1		X_2			
F1	F1 -1		-1	3.91		3.18			
F2 1			-1	3.91		8.82			
F3 -1		1		13.09		3.18			
F4 1			1	13.09		8.82			
F5 -α (-1.41		4)	0	2		6			
		4)	0			1			

- Identification of drug
- Determination of melting • point of Carvedilol

EVALUATION PARAMETERS:

- **Co-processed Excipients**
- Angle of repose
- Carr's Index
- Hausner's Ratio •

Characterization of Optimized Coprocessed Excipient

IS DIANTO

- Kawakita Analysis
- Kuno Analysis •
- Heckel Plot Analysis
- Granular Friability Index
- Effect of Lubricant
- **Dilution Potential Study**

Fast disintegrating tablets

- Weight uniformity
- Hardness & Thickness •
- Friability & Tensile strength
- In vitro disintegration time
- Wetting time
- In vitro dissolution study •
- Drug content

	Carveunor	47.04±0.05	J4.70±1.70	1.44_0.00					
	MCC	40.46±1.014	17.14±1.07	1.2±0.01					
	LM	43.52±0.60	17.81±3.64	1.19±0.02					
	DCP	39.68±0.68	35.88±2.33	1.55±0.06		ABLE			
	MANNITOL	44.89±0.72	27.76±1.13	1.38±0.02		LICA			
	SSG	41.34±1.48	28.53±2.04	$1.4{\pm}0.04$		ſ APF			
	CCS	38.98±1.23	29.45±2.31	1.41±0.04		LON			
1	СР	41.77±0.66	31.01±2.20	1.44 ± 0.050					
1	MCC Microcrystalling Callulose, I.M. Lactore Monohydrate, DCP DiCalcium Phoenhate, CCS CrosC								

MCC-Microcrystalline Cellulose, LM-Lactose Monohydrate, DCP-DiCalcium Phosphate, CCS-CrosCarmellose Sodium, CP-Cross Povidone, SSG- Sodium Starch Glycolate. *All data are shown in mean (n=3)

(A) Response Surface plot & Contour plot for CI WT (SEC) (B) Response Surface plot & Contour plot for WI B: % DISINTGRANT A: Z BINDE T (SEC (C) Response Surface plot & Contour plot for DT

Figure 5 (A): Kawakita plot for optimized batch and physical mixture Figure 5 (B): Kuno plot for optimized co-processed excipient and its physical mixture Figure 5 (C): Heckle plot for optimized co-processed excipient and its physical mixture Figure 5 (D): Effect of time on Granular Friability index Figure 5 (E): Effect of Carvedilol in tensile strength and friability Figure 5 (F): Comparison of FDT of optimized batch and physical mixture

a 0.6

CONCLUSION: It was demonstrated that multivariate techniques such as Experimental design, PCA, response surface modeling and optimization can be successfully used to characterize the cause or source of variability. Briefly, it was inferred that co-processing is the potential alternative for the development of directly compressible adjuvants. Thus, melt agglomeration is a potential alternative to make directly compressible excipient that is effective to increase the flowability and compressibility of low compressible drugs like Carvedilol. The optimized co-processed excipient was characterized by Kawakita's and Kuno's analysis, Heckel plot analysis, granular friability index, and lubricant sensitivity ratio. Results of dilution potential revealed that poorly compressible drug; Carvedilol was sufficiently incorporated into co-processed excipient for the preparation of fast disintegrating tablets. An in-vitro dissolution study showed faster disintegration of the drug compared to the conventional tablets.

1_23 (D) Response Surface plot & **Contour plot for Friability**

REFERENCE:

- 1. Almaya, A., Aburub, A., 2008. Effect of particle size on compaction of materials with different deformation mechanisms with and without lubricants. AAPS PharmSciTech 9, 414– 418. https://doi.org/10.1208/s12249-008-9059-3
- Ambore, S.M., Tekale, J., Gattani, S.G., 2014. Investigation of novel multifunctional co-processed excipient for direct compression. World Appl. Sci. J. 31, 801-810. https://doi.org/10.5829/idosi.wasj.2014.31.05.1626

The 9th International Electronic Conference on Medicinal Chemistry 01–30 November 2023 | Online

