Design of nanostructured systems for detection of Alzheimer's disease, an experimental and theoretical approach

<u>Claudia González</u>,¹ Marquiza Sablón,¹ Alicia Díaz,² Chryslaine Rodríguez ¹ ¹ Neurochemistry Department, Cuban Neuroscience Center e-mail: claugc2309@gmail.com ² Laboratory of Bioinorganic, Faculty of Chemistry, University of Havana

Nanoparticles	Hydrodynamic diameter (nm)	ζ Pot (mV)
IONPs	94	-21
IONPs@APTES	352	-15
IONPs@APTES-PEG- diCOOH ₆₀₀	132	-18
IONPs@PAA/GA	75	-54
IONPs@citrate	89	-25
IONPs@PEGdiCOOH ₆₀₀	112	-19

• The functionalization of IONPs with different coatings was confirmed by FT-IR.

• The analysis of the DLS profiles allows the hydrodynamic diameters to be determined and the Pot ζ values, measured by ELS, are a quantitative value that can be used as a stability parameter.

Characterization of IONPs conjugated to Amylovis[®]

Conclusions

- 1.Using the coprecipitation method it was possible to obtain IONPs with the different coatings, which was verified by FT-IR.
- 2. The carbodiimide method allowed the conjugation of Amylovis[®] to nanoparticles that have free carboxylate groups.
- 3.IONPs@PAA/GA-Amylovis present physical-chemical properties suitable for their possible use as contrast agents for MRI.
- 4. The *in silico* evaluation by molecular docking shows that the conjugation of Amylovis[®] to the nanosystems does not affect its affinity for the βA_{1-42} peptide.

- IONPs-APTES-PEG-diCOOH600-Amylo IONPs-PAA/GA-Amylovis — IONPs-citrate-Amylovia IONPs-PEG-diCOOH600-Amylov
- IONPs@PEG-diCOOH₆₀₀-272 Amylovis
- 69,56 -16

• Through the analysis of the DLS profiles, it was obtained that the only system capable of crossing the BBB was that of IONPs@PAA/GA-Amylovis. • The temporal stability of the nanoparticles determined by UV-Vis and Pot ζ shows that the most stable system is that of IONPs@PAA/GA-Amylovis.

In silico evaluation of the affinity of the coatings for the βA_{1-42} peptide

References

1.Sablón-Carrazana M, Fernández I, Bencomo A, et al. Zheng J, ed. PLoS One. 2015; 10(9): 135 2.Sosa-Acosta J., Silva JA, et al. Colloids Surf, A Physicochem Eng Asp. 2018; 545: 167-178. 3.Feng B, Hong RY, Wang LS, et al. Colloids Surf, A Physicochem Eng Asp. 2008; 328(1-3): 52-59. 4. Stanicki D, Boutry S, Laurent S, et al. J Mater Chem B. 2014; 2(4): 387-397. 5. Fahmy H, Abd T, Ali O, et al. J of Biochem and Molecular Toxicology. 2021; 35(3): 22671. 6. Iriarte-Mesa C, et al. Colloids and Surfaces B: Biointerfaces. 2019; 181: 470-479. 7.Lowry G, Hill R, Harper S, Rale A, et al. Environ. Sci.: Nano. 2016, 3, 953-956

GA-Amylovis PAA-Amylovis Binding energy: -4,5 kcal/mol Binding energy: -4,8 kcal/mol

citrate-Amylovis Binding energy: -4,8 kcal/mol

• The in silico evaluation by molecular docking shows that the conjugation of Amylovis[®] to the nanosystems does not affect its affinity for the βA_{1-42} peptide.

The 9th International Electronic Conference on Medicinal Chemistry

01–30 November 2023 | Online