

01-30 November 2023 | Online

Plectranthus aliciae: Biological activity of 6,7-dehydroroyleanone and derivatives

Chaired by **Dr. Alfredo Berzal-Herranz** and **Prof. Dr. Maria Emília Sousa**

Márcia Santos Filipe^{1,2}, Eva Domínguez-Martín^{1,2}, Vera M.S. Isca^{1,3}, Raquel Pereira¹, Filipa Mandim^{4,5}, Ricardo Calhelha^{4,5}, Ana María Díaz-Lanza², Lillian Barros^{4,5}, Patrícia Rijo^{1,3,*}

¹CBIOS – Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal.
²Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas. Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España.
³Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
⁴Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
⁵Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.

* Corresponding author: patricia.rijo@ulusofona.pt

01-30 November 2023 | Online

Plectranthus aliciae: Biological activity of 6,7-dehydroroyleanone and derivatives

01-30 November 2023 | Online

Abstract: *Plectranthus* genus (Lamiaceae) is known to be rich in bioactive abietane royleanone-type diterpenes, such as the 6,7-dehydroxyroyleanone (1), which have been previously found in *P. madagascariensis* (var. aliciae Codd). This abietane royleanone present moderate to significant cytotoxic activity against several cancer cell lines. Moreover, **1** has one hydroxyl group suitable for derivatization, that can be explored to enhance the cytotoxic potential of lead compound **1**. Based on this, the aim of the present work was to explore the obtention of **1**, from *P. aliciae aliciae (Codd)* van Jaarsv. & T.J.Edwards., a subspecie of *P.* madagascariensis to be further used in the preparation of new derivatives with enhanced biological activities. P. aliciae leafs hydrodestilation using a Clevenger equipment was performed, affording the essential oil (EO). 1 was assessed as the major compound of the EO, by HPLC-DAD, which was isolated and used as scaffold for esterification reactions. It was possible to obtain in three new acyl derivatives (2 to 4), with overall good yields (86 - 95 %). Regarding the biological activity screening, the semi-synthetic derivatives (2-4) improved the antioxidant activity and the cytotoxicity in MCF-7 and NCI-H460 human cancer cell lines, when comparing to **1**. Amazingly, the new esters (2-4) showed a promising anti-inflammatory activity, in a range of 16 to 53 times higher than **1** and also than the positive control dexamethasone. Currently, the mechanism of action and safety of the potential antiinflammatory derivatives are under evaluation.

Keywords: anti-inflammatory; bioactivity; essential oil; Plectranthus; royleanone

01-30 November 2023 | Online

Introduction

 \mathcal{F} Belongs to the Lamiaceae family and it's a commercially important group of flowering plants.

Plectranthus L'Hér. genus was more than 300 species distributed essentially in Africa, Asia, Australia, and some Pacific islands.

P. aliciae has a history of traditional medicinal use by local communities to treat respiratory ailments.

FIGURE 1. P. aliciae plant: A. whole plant; B. Corolla and teethed leaves; C. Hairly ovate leaves with red glands.

Rattray, R.D.; Van Wyk, B.E. The Botanical, Chemical and Ethnobotanical Diversity of Southern African Lamiaceae. *Molecules* **2021**, *26*. | Ascensao, L., et al., **1998**; Vol. 159. Rice, L.J., et al., South African Journal of Botany **2011**, *77*, 947–959. DOI:10.1016/j.sajb.2011.07.001.

01-30 November 2023 | Online

Results and discussion

FIGURE 2. 6,7-dehydroxyroyleanone (DHR **1**), the major compound of *P. madagascariensis* EO and acetonic extract.

01–30 November 2023 | Online

Results and discussion

${\ensuremath{\mathcal{P}}}$ Bioactivity evaluation of the compounds

Samples	ABTS	DPPH	ORAC	HORAC	NO
	IC50 (mM)	IC50 (mM)	(TE)	(TE)	IC50 (mM)
1	0.582	> 1.5	0.291	0.294	0.833
2	0.296	0.685	0.550	0.608	> 1.5
3	0.362	0.706	0.757	0.630	1.050
4	0.302	0.542	0.826	0.642	0.544
Trolox	0.160	0.221	1	1	> 1.5
Ascorbic Acid	0.350	0.350	-	-	-

TABLE 1. Antioxidant capacity of DHR **1** and its derivatives **2** to **4**, using different methodologies.

TE- Trolox Equivalent; ORAC- Oxygen Radical Absorbance Capacity; HORAC- Hydroxyl Radical Absorbance Capacity; NO- Nitric Oxide; TAOC- Total Antioxidant Capacity.

	S. aureus		Methicillin-Resistant <i>S. aureus</i> (MRSA)		
Samples	MIC	MBC	Samples	MIC	
1	3.91	31.25	1	3.91	
2	3.91	>31.2	2	3.91	
3	3.91	>31.2	3	3.91	
4	3.91	>31.2	4	3.91	
Vancomycin	1.95	1.95	Vancomycin	1.95	

TABLE 2. MIC and MBC values of the compounds obtained by the microdilution method against Gram-positive strains in μ g/mL.

Samples	AGS	CaCo-2	MCF-7	NCI-H460	PLP2
1	24.31 ± 1.41	31.62 ± 2.74	60.44 ± 3.69	82.98 ± 2.98	13.39 ± 0.61
2	20.74 ± 1.71	28.61 ± 0.14	27.45 ± 0.33	16.04 ± 1.68	27.54 ± 0.26
3	66.16 ± 4.49	20.38 ± 1.91	17.77 ± 0.75	12.99 ± 0.31	18.02 ± 0.19
4	18.53 ± 1.75	51.36 ± 1.56	38.45 ± 1.14	38.53 ± 3.03	36.07 ± 0.90
Ellipcin	4.99 ± 0.12	4.91 ± 0.08	4.14 ± 0.08	4.10 ± 0.08	5.68 ± 0.41

TABLE 3. Cytotoxicity results against different cell lines. GI_{50} results expressed in μ M.

AGS- gastric carcinoma; CaCo-2- colorectal adenocarcinoma; MCF-7- breast carcinoma; NCI-H460- lung cancer; PLP2- non-tumor cell line.

01–30 November 2023 | Online

Results and discussion

Samples	IC 50 (μM)		
1	4.3		
2	>10		
3	>10		
4	>10		
Doxorrubicin	0.07 ± 0.01		

TABLE 4. Anti-proliferative effect in MDA-MB-231S cancer cell line. IC_{50} values presented in μ M.

Dimethyl sulfoxide (DMSO) was used as the negative control. Doxorrubicin- positive control.

TABLE 5.	Anti-inflammatory ac	tivity using RAW 264.7	macrophages. IC ₅₀	results expressed in μ M.
----------	----------------------	------------------------	-------------------------------	-------------------------------

Samples	NO Production Inhibition (IC50 µM)
1	>159.00
2	9.94 ± 0.70
3	3.48 ± 0.18
4	4.19 ± 0.13
Dexametasone	16.05 ± 1.02

Dexametasone- positive control.

The 9th International Electronic Conference on Medicinal Chemistry 01-30 November 2023 | Online

D

Conclusions

 \mathcal{T} DHR **1** was the major constituent of the *P. aliciae* OE. This compound was quantified by HPLC, corresponding to 60% mg/g in the EO.

DHR 1 was derivatized and the results showed successful esterification reactions at the C-12 moiety led to the synthesis of three compounds (2-4) with overall good yields (86-95%).

The anti-inflammatory activity displayed the most promising results. Esterification at the C-12 esterification of **1** resulted in a significant increase in anti-inflammatory activity in derivatives **2** to **4**.

FIGURE 2. 6,7-dehydroxyroyleanone (DHR 1), the major compound of *P. madagascariensis* EO and acetonic extr

Fundação para a Ciência e a

01-30 November 2023 | Online

Acknowledgments

This research was funded by Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CIMO (UIDB/00690/2020 and UIDP/00690/2020), SusTEC (LA/P/0007/2020), and to the projects UIDB/04539/2020 and UIDP/04539/2020.

V.I., and F.M. would like to thank FCT for their PhD grants (SFRH/BD/137671/2018, and SFRH/BD/146614/2019, respectively). E.M.D.-M. gratefully acknowledges being the recipient of a predoctoral FPU-UAH 2019 fellowship and for the grant "Ayudas a la Movilidad del Personal Investigador en Formación 2022" from University of Alcalá de Henares (UAH).

universidade LUSÓFONA

