

01-30 November 2023 | Online

IN VITRO AND IN VIVO ANTIOXIDATIVE AND ANTIHYPERGLYCEMIC POTENTIALS OF BRAN AND BRAN OIL OF FARO 60 (JAMILA RICE)

Chaired by **Dr. Alfredo Berzal-Herranz** and **Prof. Dr. Maria Emília Sousa**

Fatima Mahmoud Aliyu¹, Ahmed Olatunde², Aminu Umar Kura³, Haladu Ali Gagman⁴, Oluremi A. Saliu⁵, Suwaiba Nasir⁵, Salima Adamu Sada⁵, Oluwafemi A. Idowu⁵, Blessing E. Edogbo⁵ and Habibu Tijjani^{1,5*}

¹Department of Biochemistry, Bauchi State University, Gadau, Nigeria.

²Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria.

³Department of Pharmacology, Bauchi State University, Gadau, Nigeria.

⁴Department of Biological Sciences, Bauchi State University, Gadau, Nigeria.

⁵Department of Environmental Health Science, Faculty of Health Sciences, National Open University of Nigeria, Abuja, Nigeria.

* Corresponding author: <u>haatscific@gmail.com; hatijjani@noun.edu.ng</u>

01-30 November 2023 | Online

IN VITRO AND *IN VIVO* ANTIOXIDATIVE AND ANTIHYPERGLYCEMIC POTENTIALS OF BRAN AND BRAN OIL OF FARO 60 (JAMILA RICE)

01-30 November 2023 | Online

Abstract: Oxidative stress is a concept used to describe the condition of oxidative challenges resulting from the critical imbalance between free radical generation and antioxidant defences. The study was designed to evaluate the *in vitro* and *in vivo* antioxidative and anti-hyperglycemic potentials of bran and bran oil of Faro 60 (Jamila Rice). The rice bran and oil demonstrated a significant free radical scavenging activity as it scavenges hydrogen peroxide radical with values 82.77±0.42 mg/mL and 95.26±0.07 mg/mL respectively when compared with the standard vitamin C, which scavenges with 70.17±0.06 at 20 mg/mL. Furthermore, rice bran oil demonstrated anti-diabetic effects in vitro, inhibiting alpha-amylase activity at 35.65±10.10% when compared with acarbose at 20.83±2.71% at a concentration of 20 mg/mL. More so, rice bran oil was able to lower the effect of lipid peroxidation in the plasma, liver and kidney of diclofenac-induced oxidative stressed mice at 3.22±3.70, 4.87±2.43 and $4.88\pm3.61 \ \mu mole/mg$ protein when compared with the normal control at 3.32 ± 4.07 , 6.13±1.05 and 6.94±4.69 µmole/mg protein respectively. The rice bran oil significantly (p<0.05) lowered blood sugar levels during the oral glucose tolerance test. The rice bran and rice bran oil demonstrated significant free radical scavenging and anti-hyperglycemic activities both in vitro and in vivo. It could be utilized as a good source of natural antioxidants.

Keywords: Oxidative stress; bran oil of Faro 60; Jamila Rice; Lipid peroxidation; Acarbose

01-30 November 2023 | Online

Introduction

Rice bran is a by-product produced during milling of rice; it is obtained from the outer layer of brown rice. In addition to phytonutrients, it contains nutritional dietary fiber, high valued protein and fat. It was reported that rice bran inherently contains high level of medicinally important antioxidant gamma oryzanol, a nutritional mixture of ferulic ester aside from a significant oil concentration it contains (Anwar *et al.*, 2005). Rice bran is chemically composed of protein, lipid, carbohydrate, crude fiber and vitamin B (Saunder, 1990). It was reported to be an excellent source of minerals and vitamins (Zullaikah *et al.*, 2005). The aim of the study is to evaluate the *in vitro* and *in vivo* antioxidative and anti-hyperglycemic potentials of rice bran oil of Faro 60 (Jamila rice) in diclofenac induced oxidative stressed mice.

01-30 November 2023 | Online

Material and methods

Chemicals and reagents

 α – amylase, α – glucosidase, metformin, *p*-Nitrophenyl- α -glucopyranoside (PNPG) and 3, 5-dinitrosalicylic acid (DNSA) were purchased from Sigma-Aldrich, Germany. All other reagents used were of analytical grade.

Rice Bran

Rice brans (Faro 60, Jamila) was collected from Dr. Waziri Milling Factory (Gouria Rice Factory) in Zigau, located at Latitude 58°N and Longitude 9°W, Shira Local Government, Bauchi State, Nigeria. The rice bran sample was stabilized with Microwave oven (MW489) for 30 seconds. The sample was then stored in a freezer at 0°C until the time of analysis. The rice bran oil was extracted using soxlet extraction.

Experimental animals

Albino mice weighing between 20 ± 2 g where purchase from the animal unit, University of Jos, Plateau state and acclimatized for 14 days, given standard mouse chow and water *ad libitum*. The animal care procedure was approved by the ethical review committee, University of Jos, with registration number UJ/FPS/F17-00379.

01-30 November 2023 | Online

Material and methods Cont.

Assays

Antihyperglycemic assay was determined according to the method of Du Vigneaud and Karr (1925), while α -amylase and α -glucosidase inhibition assays was determine according to Andrade-Cetto *et al.* (2008) and Kuppusamy *et al.* (2011).

In vitro antioxidant analyses was performed according to the methods of McCune and Johns, (2002) and Ruch *et al.* (1989) for 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, and hydrogen peroxide (H_2O_2) scavenging activity assays respectively. The total protein was measured according to the method of Bradford (1976). Nitric oxide (NO), and malondialdehyde (MDA) concentrations were determined according to the methods of Green *et al.* (1982), and Varshney and Kale (1990) respectively. The methods described by Misra and Fridovich (1972), and Sinha (1972) were used to determine superoxide dismutase (SOD) and catalase (CAT) respectively.

Analysis of data

Data was expressed as Mean \pm Standard Error of Mean (SEM) and was subjected to Analysis of Variance (ANOVA) followed by Dunnett's test using SPSS version 20, PSS Inc., Chicago. IL, USA. Significance was considered at p<0.05.

01-30 November 2023 | Online

Results and discussion

Table 1: Radical scavenging activities of rice bran oil of Faro 60 (Jamila Rice)

Parameters	Rice Bran Oil	Rice Bran Extract	Ascorbic Acid
Hydrogen peroxide (H ₂ O ₂)	95.26±0.07ª	82.77±0.42 ^b	70.17±0.06 ^c
DPPH Scavenging	90.62±1.61ª	87.01±0.44 ^b	81.35±0.02°
Hydroxyl Radical (OH ⁻)	33.10±8.10ª	30.81±0.41ª	20.02±1.13 ^b

01-30 November 2023 | Online

Results and discussion Cont.

Table 2: In vitro antidiabetic activities of rice bran oil of Faro 60 (Jamila Rice)

Parameters	Rice Bran Oil	ACARBOSE
alpha amylase	35.65 ± 10.10 ^a	20.83 ± 2.71 ^b
alpha glucosidase	82.53 ± 3.34 ^a	38.83 ± 3.85 ^b

01-30 November 2023 | Online

Results and discussion Cont.

Table 3: Total protein concentration in diclofenac oxidative stressed inducedmice treated with rice bran oil of Faro 60 (Jamila Rice)

Groups	PLASMA	LIVER	KIDNEY
Normal Control	637.58±3.31ª	20.42±0.28ª	84.5±0.53ª
200mg/kg body weight Vitamin C	625.50±5.69 ^b	20.10±0.29 ^b	81.25±0.75 ^b
200mg/kg body weight Rice Bran Oil	656.01±28.30 ^b	19.29±0.83ª	71.16±5.11ª
400mg/kg body weight Rice Bran Oil	643.08±15.21 ^b	18.36±0.80ª	84.17±0.30 ^a

01-30 November 2023 | Online

Results and discussion Cont.

Table 4: Lipid peroxidation concentration in diclofenac oxidative stressed inducedmice treated with rice bran oil of Faro 60 (Jamila Rice)

Groups	PLASMA	LIVER	KIDNEY
Normal Control	3.32±4.07ª	6.13±1.05ª	6.94±4.69ª
200mg/kg body weight Vitamin C	3.11±1.82 ^b	5.07±2.21 ^b	6.28±5.18 ^b
200mg/kg body weight Rice Bran Oil	3.22±3.70 ^a	4.87±2.43 ^a	4.88±3.61ª
400mg/kg body weight Rice Bran Oil	3.12±1.06ª	4.84±2.80 ^a	7.09±4.50 ^a

01-30 November 2023 | Online

Results and discussion Cont.

Table 5: Nitric oxide concentration in diclofenac oxidative stressed induced micetreated with rice bran oil of Faro 60 (Jamila Rice)

Groups	PLASMA	LIVER	KIDNEY
Normal Control	0.63±0.03ª	0.68±0.09ª	0.65±0.06ª
200mg/kg body weight Vitamin C	0.64±0.05 ^b	0.69±0.01 ^b	0.67±0.01 ^b
200mg/kg body weight Rice Bran Oil	0.61±0.02 ^{ab}	0.72±0.03 ^b	0.78±0.05ª
400mg/kg body weight Rice Bran Oil	0.62±0.01ª	0.72±0.03ª	0.65±0.05ª

01-30 November 2023 | Online

Results and discussion Cont.

Table 6: Catalase activities in diclofenac oxidative stressed induced mice treated with rice bran oil of Faro 60 (Jamila Rice)

Groups	PLASMA	LIVER	KIDNEY
Normal control	2.94±1.17ª	3.35.6±1.87ª	1.97±4.88ª
200mg/kg body weight Vitamin C	3.57±5.27 ^b	5.32±1.31 ^b	4.23±1.31 ^b
200mg/kg body weight Rice Bran Oil	2.44±3.26 ^a	1.50±1.10ª	4.24±1.00ª
400mg/kg body weight Rice Bran Oil	3.19±1.20 ^a	9.24±6.74ª	2.23±4.18ª

01-30 November 2023 | Online

Results and discussion Cont.

Table 7: Superoxide dismutase activities in diclofenac oxidative stressed induced micetreated with rice bran oil of Faro 60 (Jamila Rice)

Groups	PLASMA	LIVER	KIDNEY
Normal Control	51.51±9.04ª	236.36±51.52ª	18.18±8.85ª
200mg/kg body weight Vitamin C	49.74±2.67 ^b	285.85±21.74 ^b	4.54±1.46 ^b
200mg/kg body weight Rice Bran Oil	53.78±8.17ª	247.34±36.24 ^b	16.66±8.59 ^{ab}
400mg/kg body weight Rice Bran Oil	50.00±2.27ª	186.36±18.21ª	24.49±3.97ª

01-30 November 2023 | Online

Results and discussion Cont.

Table 8: Oral glucose tolerance test (mmol/L) in glucose induced hyperglycemic mice treated with rice bran oil of Faro 60 (Jamila Rice)

Base line	30 Minutes	1 hour	2 hours	4 hours
8.40±0.14	9.60±0.42	8.40±0.03	8.10±0.56	6.65±0.12
10.20±0.10	13.85±0.72	10.60±0.31	9.00±0.24	8.70±0.42
7.35±0.01	13.55±1.50	10.00±0.81	8.35±0.01	8.10±0.28
7.80±0.14	11.90±0.03	6.60±0.70	7.45±0.33	7.15±0.22
8.55±0.15	12.20±1.02	7.95±0.47	7.85±0.19	7.30±0.00
7.40±0.49	7.80±0.17	7.10±0.14	6.50±0.00	6.75±0.26
	Base line 8.40±0.14 10.20±0.10 7.35±0.01 7.80±0.14 8.55±0.15 7.40±0.49	Base line 30 Minutes 8.40±0.14 9.60±0.42 10.20±0.10 13.85±0.72 7.35±0.01 13.55±1.50 7.80±0.14 11.90±0.03 8.55±0.15 12.20±1.02 7.40±0.49 7.80±0.17	Base line30 Minutes1 hour8.40±0.149.60±0.428.40±0.0310.20±0.1013.85±0.7210.60±0.317.35±0.0113.55±1.5010.00±0.817.80±0.1411.90±0.036.60±0.708.55±0.1512.20±1.027.95±0.477.40±0.497.80±0.177.10±0.14	Base line 30 Minutes 1 hour 2 hours 8.40±0.14 9.60±0.42 8.40±0.03 8.10±0.56 10.20±0.10 13.85±0.72 10.60±0.31 9.00±0.24 7.35±0.01 13.55±1.50 10.00±0.81 8.35±0.01 7.80±0.14 11.90±0.03 6.60±0.70 7.45±0.33 8.55±0.15 12.20±1.02 7.95±0.47 7.85±0.19 7.40±0.49 7.80±0.17 7.10±0.14 6.50±0.00

Values are presented as mean ± SEM of triplicates determinations

01-30 November 2023 | Online

Conclusions

The rice bran and rice bran oil demonstrated significant free radical scavenging and anti-hyperglycemic activities both *in vitro* and *in vivo*. *It could* be utilized as a good source of natural antioxidants.

01-30 November 2023 | Online

Acknowledgments

WORK & LEA

PEN UNIVERSITY OF MICH

BAUCHI STATE UNIVERSITY, GADAU, NIGERIA NATIONAL OPEN UNIVERSITY OF NIGERIA, NIGERIA