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Abstract: Analysing the prey-predator model is the purpose of this paper. In interactions of the
Beddington De-Angelis type, the predator consumes its prey. Researchers first examine the existence
and local stability of potential unbalanced equilibrium boundaries for the model. In addition,For
the suggested model incorporating the prey refuge, we investigate the Hopf-bifurcation inquiry. To
emphasise our key analytical conclusions, we show some numerical simulation results at the end.
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1. Introduction

In prey predator models are two type one is an ecological model and another one is
an epidemiological model. In ecological model interactions between organisms, including
humans, and their physical environment. In epidemiological models are used to study
diseces in animals and humans. Also, the above study of ecology and epidemiology is
called eco-epidemiology. In 1949, Solomon first used the term ’functional response’. In
the late 1950s, C. S. (Buzz) Holling conducted experiments to investigate how predators
capture prey. In the resulting series of influential articles, Holling established three main
functional response types, which he referred to as Holling types 1, 2, and 3. The Holling
type I functional response g(X,Y) = aX, where a > 0, is based on the principle of mass
action and depends on the prey. Therefore, in the event of a superabundant supply of
food, predators will feed at the highest rate possible for each individual predator, and a
subsequent rise in food supply will not be able to increase the eating rate further. Because
of this, it is given in the form g(X, Y) = bX

w+X , which is bounded as well as non-linear (the
Michaelis-Menten function or the Holling type II function). Except at low prey density,
the Holling type 3 is similar to the type 2, but the Holling type III prey capture rate
accelerates. The Holling type III functional response is of the form g(X, Y) = cX2

w+X2 , which
is bounded as well as non-linear[6].Up to a certain range, the Holling type II functional
response accurately describes feeding rate; however, there may be circumstances in which
an increase in predator density indicates a decrease in feeding rate because of mutual
interference between individual predators. For this reason, we transform the Holling
type II functional response into the Beddington-DeAngelis functional response, g(X, Y)
= bX

w1+Y+w2X [3]. DeAngelis proposed the Beddington-DeAngelis functional response to
solve the apparent problems with the predator-prey model. For describing parasite-host
interaction independently, Beddington offered the same kind of functional response. It
accurately represents the majority of the qualitative features of the ratio-dependent model
while avoiding the ”low density problem,” which is typically contentious[2–5].The prey
refuge and harvesting are incorporated into the eco-epidemiological model using Holling
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type II behaviour, which has been studied by many authors[1]. In this paper, We analyze the
Beddington De-Angelis type eco-epidemiology model’s behaviour towards the prey refuge
and prey harvesting[7]. This piece is structured as follows: The prey-predator system’s
past is described as section 1. In section 2, the model formation is presented. Section 3
shows some mathematicals results like positivity, positive invariance and boundedness.
The existence of equilibrium points is described in section 4. Local stability analyses in
section 5. The Global stability and Hope-Bifurcation Analysis is found in Section 6 and 7.
Results are presented numerically in section 8. Finally, this paper concludes with a few
observations about the suggested system in secton 9.

2. Model Formation

The non-linear differential equation are:

dS
dT = r1S(1− S+IL )− ηIS − ω1SW

β1+µS+ϑW − E1H1S ,
dI
dT = ηIS − d1I − γ1(1−θ)IW

β1+(1−θ)I − E2H2I ,
dW
dT = −d2W + cγ1(1−θ)IW

β1+(1−θ)I + cω1SW
β1+µS+ϑW .

 (1)

and the positive values areW > 0,S > 0 and I > 0.

Table 1. A physiological meanings of parameters are listed in the below chart.

Parameters Physiological representation Units

ϑ Magnitude of interference of predator m
µ Effect of handing time for predator m

H1,H2 The Harvesting effort of predator No.per unit area(tons)
r1 Prey growth rate per day (t−1)
L Environment carrying capacity No.per unit area(tons)

E2 and E1 Catchability coefficient of predator per day (t−1)
β1 Constant of Half-saturation m
ω1 Susceptible Prey rate of Predation per day (t−1)
c Conversion rate of prey to predator 0 ≤ C ≤ 1

d1 and d2 Death rate of infected prey and predator per day (t−1)
γ1 Infected Prey Predation rate per day (t−1)
η The incidence of contamination for prey per day (t−1)
θ Refuge of prey m−1

W ,SandI Predator, Susceptible and Infected Prey No.per unit area(tons)

ds
dt = rs(1− s− i)− si− ωsw

β+µs+ϑw − h1s = f1(s, i, w),
di
dt = is− di− γ(1−θ)iw

β+(1−θ)i − h2i = f2(s, i, w),
dw
dt = −ϕw + cγ(1−θ)iw

β+(1−θ)i + cωsw
β+µs+ϑw = f3(s, i, w),

 (2)

where,reduce parameter is as follows: w = W
L , i = I

L , s = S
L , t = ηLT . r = r1

ηL , ω =
ω1
ηL , h1 = E1 H1

ηL , d = d1
ηL , h2 = E2 H2

ηL , γ = γ1
ηL , β = β1

L , ϕ = d2
ηL , and the initial conditions

w(0) ≥ 0, s(0) ≥ 0 and i(0) ≥ 0. The above-defined functions are in R3
+.

3. Mathematical Results
3.1. Positive Invariance

Note the function fi(s, i, w), i = 1, 2, 3 are defined for s > 0, i > 0, w > 0.
lim

(s,i,w)→(0,0,0)
fi(s, i, w) = 0, i = 1, 2, 3. Using fi(0, 0, 0)=0, i = 1, 2, 3 we can extend the

domain and conclude that the functions fi(s, i, w), i = 1, 2, 3 is locally Lipschitzian and
continuous on R3

+ ={(s, i, w) : s ≥ 0, i ≥ 0, w ≥ 0}. Hence, the soluation of equation (2)
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with non-negative initial condition exists and is unique. It can be show that these solution
exists for t > 0 and stay non-negative. Hence, the region R3

+ is invariant for the system (2).

3.2. Positivity of Solutions

Theorem 1. The solutions of (2) are positive in the R3
+.

Proof. Since s(0) ≥ 0, i(0) ≥ 0 and w(0) ≥ 0 (2) becomes,

s(t) = s(0)exp
(∫ 1

0

[
r(1− s− i)− i− ωw

β+µs+ϑw − h1

]
dt
)
≥ 0,

i(t) = i(0)exp
(∫ 1

0

[
s− d− γ(1−θ)w

β+(1−θ)i − h2

]
dt
)
≥ 0,

w(t) = w(0)exp
(∫ 1

0

[
−ϕ + cγ(1−θ)i

β+(1−θ)i +
cωs

β+µs+ϑw

]
dt
)
≥ 0.

Therefore equation (2) are positive in R3
+.

3.3. Boundedness of Soluation

Theorem 2. The solutions of (2) are bounded in R3
+.

Proof. The prey population in the system (2), it is observed that ds
dt ≤ rs(1− s). We have,

limt→∞ sup s(t) ≤ 1. let z = s + i + w
dz
dt = ds

dt +
di
dt +

dw
dt

= rs(1− s)− (1−c)ωsw
β+µs+ϑw − h1s− (d + h2)i− (1−c)γ(1−θ)iw

β+(1−θ)i − ϕw

≤ r
4 − h1s− (d + h2)i− ϕw

(
Max, rs(1− s) = r

4 andc < 1
)

≤ r
4 − ζz, where, ζ = min(h1, d + h2, ω)

We have, dz
dt + ζz ≤ r

4 . Using the fundamental concept of differential inequality, we derive
0 < z ≤ r

4ζ (1− exp−ζt) + z(s0, i0, w0) exp−ζt . For t→ ∞, we have 0 < z < r
4ζ .

Thus the soluation (2) are bounded in R3
+ ,for all ε > 0, Ω = {(s, i, w) ∈ R3

+;
s + i + w ≤ r

4ζ + ε}

4. Equilibrium Points

• The E0(0, 0, 0) represents the essence of trivial equilibrium.
• E1(

r−h1
r , 0, 0)is the free of infection and predator free equlibrium its exists for h1 < r.

• E2(s̄, ī, 0, ) is predator free equlibrium . where, ī = r(1−d−h2)−h1
r+1 , s̄ = d + h2.

• Positive equilibrium is E∗(s∗, i∗, w∗), where, i∗ = −ϕβ(s−d−h2)+sγ(1−θ)[r−rs−h1]c
(1−θ)[ϕ(s−d−h2)+γ(rs+d+h2)c]

,

w∗ = c(s−d−h2)[(rs+d+h2)β+(1−θ)(r−rs−h1)s]
(1−θ)[ϕ(s−d−h2)+γ(rs+d+h2)c]

and the s∗ is exist unique positive roots of

the below polynomical equations, Us5 − Vs4 −Ws3 − Xs2 − Ys − Z = 0, where,
U = cϑr2e3e2

4, V = [rµe3e2
4e5 + ϑ(Fre3e4 − cre4H)], Z = e1[Me4e3β− ce1β(M−ω)],

W = [rµe1e2
3e2

4 + βHe4e5 + µMe4e5 + cre4ω + ϑ(FM + re3e4G− cre4M)]
X = [re3e2

4e5β + µe4e5H + e1e3e4βH + µe1e3e4M− Fω + ϑ(FM + GH − cre2
2e3e4β)]

Y = [rae1e2
3e2

4 + µe1e3e4H + e4e5Mβ− Gω + ϑ(GM− ce2
2aH)], M = e1[e2e3e4 − ϕβ],

F = c[rβ + e2e4 + re1e4], G = ce1[β − rβ − e2e4], H = e4[e2 ϕ − re1e3 − cγe2] + (r +
1)ϕβ, e1 = d + h2, e2 = r− h1, e3 = cγ− ϕ, e4 = 1− θ, e5 = ϕ + γcr.

5. Local Stability Analysis

It is necessary to calculate the Jacobian matrix, which is provided by, in order to

evaluate the stability of the system. (2) J(E) =

 x11 x12 x13
x21 x22 x23
x31 x32 x33

 Where,

x11 = − (β+ϑw)ωw
(β+µs+ϑw)2 − i(r + 1)− h1 + r(1− 2s), x12 = −s(1 + r), x13 = − (β+µw)ωs

(β+µs+ϑw)2 ,
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x21 = i, x22 = s− d− h2 − βγw(1−θ)
(i(1−θ)+β)2 , x23 = − iγ(1−θ)

(i(1−θ)+β)
,

x31 = − (ϑw+β)ωcw
(µs+ϑw+β)2 , x32 = βcγ(1−θ)w

(β+i(1−θ))2 , x33 = −ϕ + icγ(1−θ)
β+(1−θ)i +

(µs+β)ωcs
(β+µs+ϑw)2 .

Theorem 3. If the trivial equilibrium point E0(0, 0, 0) is stable, if it is r < h1, then it is unstable.

Proof. The Jacobian matrix for E0(0, 0, 0) is J(E0) =

 r− h1 0 0
0 −d− h2 0
0 0 −ϕ

,

The characteristic equation of Jacobian matrix is J(E0),
((r− h1)− λ01)((−d− h2)− λ02)(−ϕ− λ03) = 0, here,λ02 < 0, λ03 < 0 then the equilib-
rium point E0 is stable if it is r < h1, then it is unstable.

Theorem 4. If r(1− d− h2) < h1 and cω(r−h1)
rβ+µ(r−h1)

< ϕ , the equilibrium point E1(
r−h1

r , 0, 0)
within the infected-free and predator-free regions is stable; otherwise, it is unstable.

Proof. The Jacobian matrix for E1 is J(E1) =


h1 − r −r+h1

r (r + 1) −ω(r−h1)
rβ+µ(r−h1)

0 1− d− h2 − h1
r 0

0 0 cω(r−h1)
rβ+µ(r−h1)

− ϕ


The characteristic equation of Jacobian matrix is J(E1),
(h1 − r− λ11)(1− d− h2 − h1

r − λ12)(
cω(r−h1)

rβ+µ(r−h1)
− ϕ− λ13) = 0

here, if r(1− d− h2) < h1 and cω(r−h1)
rβ+µ(r−h1)

< ϕ , the equilibrium point E1(
r−h1

r , 0, 0) within
the infected-free and predator-free regions is stable; otherwise, it is unstable.

Theorem 5. The Predator free equlibrium point E2(d + h2, r(1−d−h2)−h1
r+1 , 0) is locally asymptoti-

cally stable if ϕ > c(ω + γ).

Proof. The Jacobian matrix at E2 is J(E2) =

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 where,

b11 = −r(d + h2), b12 = −(d + h2)(r + 1), b13 = −ω(d+h2)
β+µ(d+h2)

, b21 = r(1−d−h2)−h1
r+1 ,

b22 = 0, b23 = − iγ(1−θ)
(β+(1−θ)i) , b31 = 0, b32 = 0, b33 = −ϕ + (β+µs)ωcs

β+µs+ϑw + ciγ(1−θ)
β+(1−θ)i .

The characteristic equation of Jacobian matrix is J(E2), λ3 + Rλ2 + Qλ + P = 0, here,
R = −u11 − u33, Q = −u21u12 + u33u11, P = u12u21u33. If P,R and RQ-P are positive,
According to the Routh-hurwitz criterion, the negative real parts are the root of the above
characteristic equation if and only if P,R and RQ-P are positive. RQ− P = u11u33(−u11 −
u33) + u11u12u21. The sufficient conditions for u33 to be negative are ϕ > c(ω + γ). hence,
E2(d + h2, r(1−d−h2)−h1

r+1 , 0) is locally asymptotically stable.

Theorem 6. Locally stable and displaying asymptotic stability, the positive equilibrium point E∗.
If G > 0, C > 0 and GD− C > 0 .Where G = −v11 − v22, D = −v21v12 + v22v11 − v13v31 −
v23v32, C = v13(v22v31 − v21v32) + v23(v11v32 − v12v31).

Proof. At E∗, the Jacobian matrix is J(E∗) =

 v11 v12 v13
v21 v22 v23
v31 v32 v33

 where,

v11 = − (β+ϑw)ωw
(β+µs+ϑw)2 − i(r + 1)− h1 + r(1− 2s), v12 = −s(1 + r), v13 = − (β+µw)ωs

(β+µs+ϑw)2 ,

v21 = i, v22 = s− d− h2 − βγw(1−θ)
(i(1−θ)+β)2 , v23 = − iγ(1−θ)

(i(1−θ)+β)
,

v31 = − (ϑw+β)ωcw
(β+µs+ϑw)2 , v32 = βcγ(1−θ)w

(β+i(1−θ))2 , v33 = 0.
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The characteristic equation of Jacobian matrix isJ(E∗),

λ3 + Gλ2 + Dλ + C = 0 (3)

here, G=−v11 − v22, D=−v21v12 + v22v11 − v13v31 − v23v32, C=v13(v22v31 − v21v32)
+v23(v11v32 − v12v31). If G > 0, C > 0, GD − C > 0. According to the Routh-hurwitz
criterion, the negative real parts are the root of the above characteristic equation if and only
if G,C and GD-C are positive. hence, E∗ is locally asymptotically stable.

6. Global Stability Analysis

Theorem 7. The endemic equilibrium point E∗ is globally asymptotically stable.

Proof. Consider a Lyapunov function

V(s, i, w) =
[
s− s∗ − s∗ ln

s
s∗
]
+ d1

[
i− i∗ − i∗ ln

i
i∗

]
+ d2

[
w− w∗ − w∗ ln

w
w∗
]

dV
dt =

[
s− s∗

w

]
s(t) + d1

[
i− i∗

i

]
i(t) + d2

[
w− w∗

w

]
w(t)

≤
(

s− s∗

s

)[
rs(1− s− i)− si− ωsw

β + µs + ϑw
− h1s

]
+ d1

(
i− i∗

i

)[
is− di− γ(1− θ)iw

β + (1− θ)i
− h2i

]
+d2

(
w− w∗

w

)[
−ϕw +

cγ(1− θ)iw
β + (1− θ)i

+
cωsw

β + µs + ϑw

]
≤ −(s− s∗)[r(s + i)− r(s∗ + i∗) + (i− i∗)]−ω

[
w

β + µs + ϑw
− w∗

β + µs∗ + ϑw∗

]
−d1(i− i∗)

[
−(s− s∗) + γ(1− θ)

(
w

β + (1− θ)i
− w∗

β + (1− θ)i∗

)]
−d2(w−w∗)

[
−cω

(
s

β + µs + ϑw
− s∗

β + µs∗ + ϑw∗

)
− cγ(1− θ)

(
w

β + (1− θ)i
− w∗

β + (1− θ)i∗

)]
Obviously,

V(s, i, w) ≤ 0. we conclude that E∗ is globally asymptotically stable.

7. Hopf-Bifurcation Analysis

Theorem 8. If the critical value for the bifurcation parameter θ is exceeded, the model (2) ex-
perience the hope-bifurcation. the existence of the following hope-bifurcation criteria at θ = θ∗,
1.N1(θ

∗)N(θ∗)− N3(θ
∗) = 0. 2. d

dθ (Re(λ(θ)))|θ=θ∗ 6= 0 Where, λ is the characteristic of the
equation’s naught in reference to its underlying a state of equilibrium position.

Proof. For θ = θ∗, (3) is in the form of an attribute equation.

(λ2(θ∗) + N2(θ
∗))(λ(θ∗) + N1(θ

∗)) = 0. (4)

Which implies that ±i
√

N2(θ∗) and −N1(θ
∗) be the zero of the above equation. The following

transversality requirement must be satisfied in order for us to achieve the Hopf-bifurcation
at θ = θ∗. d

dθ∗ (Re(λ(θ∗)))| 6= 0. The general solutions of the previously mentioned equation
for all θ. (4) λ1=r(θ)+ is(θ), λ2=r(θ)- is(θ), λ3=−N1(θ). We have, d

dθ∗ (Re(λ(θ∗)))| 6= 0.
Let λ1 = r(θ) + is(θ) in the (4), we get A(θ) + iB(θ) = 0. Where, A(θ)=r3(θ)+r2(θ)N1(θ)-
3r(θ)s2(θ)− s2(θ)N1(θ)+N2(θ)r(θ) + N1(θ)N2(θ), B(θ)=V2(θ)s(θ)+
2r(θ)s(θ)N1(θ)+3r2(θ)N(θ)+s3(θ).

dA
dθ

= χ1(θ)r
′
(θ)− χ2(θ)s

′
(θ) + χ3(θ) = 0, (5)

dB
dθ

= χ2(θ)r
′
(θ) + χ1(θ)s

′
(θ) + χ4(θ) = 0. (6)
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where, χ1=3r2(θ)+2r(θ)N1(θ)-3s2(θ)+N2(θ),χ2=6r(θ)s(θ)+2s(θ)N1(θ),
χ3=r2(θ)N

′
1(θ)+s2(θ)N

′
1(θ)+N

′
2(θ)r(θ), χ4=N

′
2(θ)s(θ)+2r(θ)s(θ)N

′
1(θ).

On multiplying (5) by χ1(θ) and (6) by χ2(θ) respectively

r(θ)
′
= −χ1(θ)χ3(θ) + χ2(θ)χ4(θ)

χ1
2(θ) + χ22(θ)

. (7)

Substituting r(θ) = 0 and s(θ) =
√

N2(θ) at θ = θ∗ on χ1(θ), χ2(θ), χ3(θ), and χ4(θ), we
obtain χ1(θ

∗)=−2N2(h∗2), χ2(θ
∗)=2N1(θ

∗)
√

N2(θ∗), χ3(θ
∗)=N

′
3(θ
∗)-N2(l∗)N

′
1(θ
∗),

χ4(θ
∗)=N

′
2(θ
∗)
√

N2θ∗. The equation (7), implies r
′
(θ∗) =

N
′
3(θ
∗)−(N1(θ

∗N2(θ
∗)))

2(N2(θ∗)+N2
1 (θ
∗))

, if N
′
3(θ
∗)−

(N1(l]θ∗)N2(θ
∗))

′ 6= 0 it suggests that d
dθ∗ (Re(λ(θ∗)))| 6= 0, and λ3(θ

∗) = −N1(θ
∗) 6= 0.

Therefore the conditios N
′
3(θ
∗)− (N1(θ

∗)N2(θ
∗))

′ 6= 0 is ensured that the transversality
requirement holds, as a result, the model (2) has entered the Hopf bifurcation at θ = θ∗.

8. Numerical Simulations

In this section, we perform some numerical simulations on the system (2)in order to
verify our theoretical findings.In this study, susceptible prey predator rate (ω) and prey
refuge (θ) well be taken as important control parameters. Through the use of the MATLAB
software, each of us performed various mathematical simulations with these particular
parameter values are r=0.5, β= 0.2, d= 0.1, c= 0.5, γ= 0.1, h2= 0.2, ϑ= 0.3, µ= 0.2, ϕ= 0.12,h1=
0.01, γ= 0.1, ω= variable, θ= variable [8].

8.1. Effect of Varying the Susceptible Prey Predator Rate ω

We should adjust the database variable 2 as θ = 0.2. For the given limitation value, E∗

is stable at positive equilibrium point ω ≥ 0.3.

Figure 1. The system’s time series solution additionally parametric plot are displayed in the previ-
ously mentioned figure. (2) with limitation values in Table 2 except θ = 0.2 and ω = 0.35.
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Figure 2. The compactness of predator population, infected and susceptible prey for the limitation
values in table 2 except θ = 0.2 and ω = 0.30, 0.33 and 0.36.

8.2. Effect of Varying the Prey Refuge θ

We should adjust the database variable 2 as ω = 0.3. For the given limitation value,
E∗ is stable at positive equilibrium point for θ ≥ 0.2.

Figure 3. The compactness of predator poulation, infected and susceptible prey for the limitation
values in Table 2 except for ω = 0.3 and θ = 0.2, 0.25 and 0.3.

9. Conclusions

In this study, we investigated the three- species food web eco-epidemiolodical model
with prey refuge in infected prey population and harvesting sffect in both prey populations.
Some mathsmatical results like positive invariance, positivity and boundedness analysed
in system (2). The local stability is assigned to each biologically feasible equilibrium point
of the system.Golbal stability analysed by sutiable lyapunov function. Hofe-bifurcation
analysed by bifurcation parameter (θ).Also, Prey refuge (θ) and susceptible prey predator
rate (ω) is used as acontrol parameter. According to the analytical and numerical findings,
the prey refuge and susceptible prey predator rate has a major impact on the population. If
we increase the susceptible prey predator rate and prey refuge in predator populations, the
system loses its stability. This study shows the complex behavior of the proposed model.
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