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Introduction

● Mainstream debate in neuroscience and machine learning arguing if neural

networks benefit from Low [Op de Beeck et al., 2001, Gao and Ganguli, 2015,

Gallego et al., 2017, Ansuini et al., 2019, Recanatesi et al., 2019] vs. High [El-

moznino and Bonner, 2022] dimensional representations.
● We suggest that learning in deep neural networks optimizes signal-to-noise
processing.

● We also speculate that nonlinearities (e.g., in activation functions) facilitate

this process.

● To test these hypotheses, we defined a measure of the signal-to-noise ratio

(SNR) which can be applied to neural representations associated with predic-

tions of unseen data.

Methods

● In neural networks, patterns of activity define amanifold.
● We can analyze these manifolds in feature space, e.g., for each class in a

categorization task.

● Qualitatively, manifolds’ separability can be expressed in terms of the distance

between centroids minus their overlap, i.e., the projection of the manifolds in

that axis.

● Let’s consider two different categories:

● Our definition of the SNR then becomes:

𝑆𝑁𝑅 =
‖𝛥x0‖ −𝑁𝑙𝑖𝑛𝑒𝑎𝑙

‖𝛥x0‖
= 1 −

𝑁𝑙𝑖𝑛𝑒𝑎𝑙

‖𝛥x0‖
(1)

● ‖𝛥x0‖: distance between centroids

● 𝑁𝑙𝑖𝑛𝑒𝑎𝑙 =
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𝑇

∑
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∑

𝑝𝑟𝑜𝑗−1 quantifies the overlapping zone.

● Equation (1) can be used to quantify the SNR of a subset adding the term
∑

𝑝𝑟𝑜𝑗 (because we are considering all cluster,
∑

𝑝𝑟𝑜𝑗 = 0)
● We calculate the probability of one input image to belong to one category as

𝑝(𝑎𝑖) =
𝑎𝑖

∑

𝑗 𝑎𝑗
● We used the MNIST image dataset.

● Feedforward neural networks were trained to classify digits as even or odd.

These neural networks have one or two hidden layers with 784 neurons each

one.

Conclusions

● High correlation betweenAccuracy and SNR supports our hypothesis that

learning optimizes the SNR in neural networks.

● Early stopping based on SNR better avoids overfitting, when using sigmoid

and linear function, than the loss function.

Results

● After training SNR is highly predictive of the Accuracy (top: 1 hidden layer model, bottom: 2

hidden layers model, right: linear fit Acc. vs. SNR)

● Dimensionality in output layer (probabilities) is always equal to 1 (two-dimensional space with

one constraint), so is not predictive of the accuracy.

● Distributions of activations after applying non-linearities show two modes: silent (non-
preferred input) and non-silent (preferred input) activity

● We analyze if using SNR compared to the loss function better avoids overfitting when using

early stopping.

State-of-the-art early stopping approach is using the minimum of the loss function in a re-

duced dataset (validation). However, this method is sensitive to noise in the validation set

[Genkin and Engel, 2020]. Here we adapt the SNR metric (1) assuming that the training and

validation sets belong to the same distribution.

● We show that better performance can be achieved by this method when noise is present in the

data.

● Remarkably the two non-linearities behave very differently when using early stopping based on

SNR: better performance is achievedwith the sigmoid function, whereas the ReLU function shows

stronger irregularity and worse performance.
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