

Application of Molecular Similarity and Artificial Neural Networks for PD-L1 inhibitors Virtual Screening

Van-Thinh To, Tieu-Long Phan, Bao-Vy Doan Ngoc, Phuoc-Chung Nguyen Van, Thanh-An Pham, Hoang-Son Lai Le, The-Chuong Trinh, and Tuyen Ngoc Truong

Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam

01 Introduction

Background

Cancer cells can protect themselves from immune cells by producing PD-L1, which binds to the transmembrane PD-1 protein on T cells and inhibits their activation. Thus, PD-1 and PD-L1 inhibitors can lead to T cell activation, that results in tumor destruction

Research goals

• Building molecular similarity model

Building ANN model

Identifying potential drug candidates

Datasets and methods

• Screening dataset: a repurposing data that contains 15235 compounds from the

2.1. Datasets

• Dataset for building the molecular similarity and ANN models: 2,044 substances from Google Patents, splitting them into training, validation, and test sets

Tumor Growth

ANN architecture **Molecular Similarity** 2.2. Methods Medicinal Chemistry filter **SECFP fingerprints** Substructure **Splitting of data Evaluation** Prediction Molecular 1 0 1 0 0 1 1 1 0 1 Training (72%) F1 score Smiles Active Validation **Similarity Fingerprint** CC(=O)NC1= (8%) CC=C(C=C1)O Tanimoto coefficient (TC) = 0.32 Hit, TC = 0.34 Query Average Extended Python Inactive BMS-1166 Testing precision Lipinski Rule of 5 (20%) IC50 of 1.4 nN Molecular mass ≤ 500 g/mol $T(a,b) = \frac{N_c}{N_a + N_b - N_c}$ Hydrogen bond donor ≤ 5 en bond acceptor ≤ 1 logP ≤ 5 TPSA ≤ 140 Å Drug target Tanimoto Index **PAINS filter Drugbank Database**

Drugbank database

The decoy generation achieved promising results, with AUC-ROC 1NN of 0.52, AUC-ROC RF of 0.65, Doppelganger scores mean of 0.24, and Doppelganger scores max of 0.346, indicating that the decoys closely resemble the active set.

04

Conclusions

This study's virtual screening resulted in the 7 most potential substances for PD-L1 inhibitory activity in vitro assay. We recommend to conduct synthesis and test the activity of the four most potential substances. Design more molecular frameworks and optimize in silico processes.

Reference

- Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: An overview. International journal of cancer. 2021;149(4):778-789.
 Obseque KC. Assal A, Lazar-Molnar E, Yao Y, Zang X, Human cancer immunotherapy with antibodies to the PD-1
- 2. Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang X. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends in molecular medicine. 2015;21(1):24-33.

Author: Van Thinh To (0972.051.347) Email: tvthinh.d19@ump.edu.vn

The 9th International Electronic Conference on Medicinal Chemistry 01–30 November 2023 | Online

