# Application of Molecular Similarity and Artificial Neural Networks for PD-L1 inhibitors Virtual Screening 

Van-Thinh To, Tieu-Long Phan, Bao-Vy Doan Ngoc, Phuoc-Chung Nguyen Van, Thanh-An Pham, Hoang-Son Lai Le, The-Chuong Trinh, and Tuyen Ngoc Truong
Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam

01 ) Introduction


Background
Cancer cells can protect themselves from immune cells by producing PD-L1, which binds to the transmembrane PD-1 protein on T cells and inhibits their activation. Thus, $\mathrm{PD}-1$ and PD-L1 inhibitors can lead to $T$ cell activation, that results in tumor destruction
Research goals

- Building molecular similarity model
- Building ANN model
- Identifying potential drug candidates


Datasets and methods

### 2.1. Datasets

- Dataset for building the molecular similarity and ANN models: 2,044 substances from Google Patents, splitting them into training, validation, and test sets
- Screening dataset: a repurposing data that contains 15235 compounds from the Drugbank database




## Conclusions

This study's virtual screening resulted in the 7 most potential substances for PD-L1 inhibitory activity in vitro assay. We recommend to conduct synthesis and test the activity of the four most potential substances. Design more molecular frameworks and optimize in silico processes.

