Abstract

1 Faculty of Natural Sciences, Novosibirsk State University, Pirogova Str., 1, 630090 Novosibirsk, Russia
2 Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent'ev Avenue, 8, 630090 Novosibirsk, Russia
3 N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrent'ev Avenue, 9, 630090 Novosibirsk, Russia

* Correspondence: arseniimoralev@gmail.com

Abstract: Multidrug resistance (MDR) remains a significant challenge in cancer therapy, primarily due to the overexpression of transmembrane drug transporters, with P-glycoprotein (P-gp) encoded by the human ABCB1/MDR1 gene being a central focus. Reduced intracellular drug levels lead to decreased chemosensitivity of cancer cells, culminating in drug resistance. Consequently, the development of P-gp inhibitors has emerged as a promising strategy to combat MDR. In this study, we evaluated eight soloxolone amides for their potential to inhibit P-gp-mediated efflux in MDR tumor cells. Using molecular docking, all compounds were shown to have a direct interaction with the P-gp transmembrane domain characterized by low binding energies (<-9 kcal/mol). Validation of P-gp inhibitory activity was performed on KB-8-5 human cervical cancer cells and RLS40 murine lymphosarcoma cells with P-gp-mediated MDR. The lead compound sg-650 at non-toxic concentration of $40 \mu \mathrm{M}$ significantly increased the intracellular accumulation of the P-gp substrates rhodamine-123 and doxorubicin by 10.4- and 1.5-fold, respectively, in KB-8-5 cells. Kinetic studies demonstrated an uncompetitive manner of doxorubicin efflux inhibition. In addition, sg-650 synergistically enhanced doxorubicin cytotoxicity in a dose-dependent manner, demonstrating MDR reversal activity. Similar effects were observed in sg-650-treated RLS40 cells. These results underscore the potential of sg -650 as a potent small molecule P-gp inhibitor that holds promise for overcoming MDR in cancer treatment.

Keywords: Multidrug resistance; pentacyclic triterpenoids; p-glycoprotein; soloxolone.

Supplementary Materials:

Author Contributions: Conceptualization, A.V.M.; methodology, A.V.M., A.D.M.; software, A.D.M.; validation, A.D.M.; formal analysis, A.D.M.; investigation, A.D.M.; resources, O.V.S., N.F.S.; data curation, A.D.M., A.V.M.; writing-original draft preparation, A.D.M.; writing - review and editing, A.V.M.; visualization, A.D.M.; supervision, A.V.M., M.A.Z.; project administration, A.V.M.; funding acquisition, A.V.M. All authors have read and agreed to the published version of the manuscript."

Funding: This work was supported by the Russian Science Foundation (grant no. 23-14-00374).
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable. 1

Conflicts of Interest: The authors declare no conflict of interest. 3

