Simplified configuration of fiber-optic Brillouin observation using tunable reflectivity mirror

Haruki Sasage¹, Yosuke Mizuno², and Heeyoung Lee¹

¹Shibaura Institute of Technology, ²Yokohama National University

1. Background and purpose

- **Optical fiber sensors**
 Increasing demand for “health monitoring” of civil infrastructures for human safety

 Features of optical fibers, such as small diameter, light weight, high flexibility, and resistance to electromagnetic interference

- **Distributed strain and temperature sensing based on Brillouin scattering**
 Ability to measure magnitude and position of strain and/or temperature change along sensing fiber

 BFS linearly depends on applied strain and temperature

- **BOCDR**

 + Frequency downshift
 - Incident light spectrum

 Powershift (BFS)

 Frequency spectrum

BFS linearly depends on applied strain and temperature

- **Purpose**
 Development of Brillouin observation system that eliminates the independent reference light path and installs a TRM at the open end of the sensing fiber to control the power of the Fresnel reflected light, and thus maximize the SNR of the BGS.

2. Experiments

- **Experimental setup for observing BGS**

 Standard setup

 Simplified setup with TRM

 Length of sensing fiber : ~ 5 m
 Injected optical power : ~ 20 dBm
 Conditions:
 ① Observation of BGS when the reflectivity is between −7 dB to −17 dB.
 ② Investigation of reflectivity dependence of BGS height when reflectivity is between −2 dB to −20 dB.

- **Experimental result**
 ① Observed BGS dependence on mirror reflectivity
 ② Height of BGS change in varying the reflectivity

 Reflectivity is defined as power difference between incident and reflected light on sensing fiber

 BGS around 10.83 GHz clearly changed depending on reflectivity

 SNR reached maximum of 1.8 dB when reflectivity was -9 dB

 Fresnel reflection at open end of silica SMF is about -14 dBm, and SNR at this time is about ~ 1.0 dB

3. Conclusion

We developed a simplified Brillouin observation system that eliminates the need for an independent reference path by incorporating a tunable reflectivity mirror at the open end of the sensing fiber.

At a reflectivity of -9 dBm the SNR was approximately double that of the -14 dB Fresnel reflection.