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Abstract: This paper represents a three-species food web model based on the connections between
susceptible prey, infected prey, and predator species. It is considered that in the absence of predator
species, prey species grow logistically. Predators consume susceptible and infected prey in the form
of Crowley-Martin and Beddington-DeAngelis functional responses. Also, infected prey consumes
susceptible prey in the form of Holling type II interactions. Here, prey refuge and harvesting in
prey with disease in a prey population are taken into consideration. Positiveness, boundedness, and
positive invariance are examined. All biologically feasible equilibrium points are investigated. The
local stability of positive equilibria and their global stability are analyzed by the suitable Lyapunov
functions. Finally, numerical solutions are analyzed according to our findings.

Keywords: Eco-epidemiological model; Crowley Martin functional response; beddington De-Angelis
form; stability; equilibrium

1. Introduction

In mathematical ecology, at the beginning of twentieth century, many plan were made
to statistically predict the existence and species of evolution. Certainly, the well-known
classical Lotka-Volterra model was the first major effort in this area in 1927.

A certain percentage of prey populations can receive some degree of protection from
nature by using its refuges. By lowering the risk of extinction from predation [1] and
dampening prey predator oscillations[2], such refuges can aid in extending predator-prey
interactions. Studies in the literature reveal that refuges have both stabilizing [3]and
destabilizing effects [4] in the environment. After the fundamental model of Kermack-
McKendric [5] on SIRS systems, which describes the diseases spread through contact.
Mathematical modeling of epidemics has emerged as an important area of study. A
significant amount of study has been conducted in this field.[6],[7],[8].

One of the essential elements of predator-prey population modeling is a "Functional
Response". Most functional responses, such as Holling kinds, are labeled "prey-dependent"
since they are dependent on either the prey or the predator. In Crowley-Martin functional
responses, both the prey and the predator are considered. Prey handling along with prey
hunting are seen as two distinct and independent acts in Beddington-DeAngelis functional
response. In this study, the functional response of Crowley-Martin, Holling type II, and
Beddington-DeAngelis types are taken into account. The analysis of the consequences of
disease on prey refuge, and harvesting in prey in the predator-prey system is the primary
focus of this study. Here, the boundedness and positive invariance of the equilibrium points
of this system, together with their local and global stabilities, have all been investigated.
To the best of our knowledge, no researchers have investigated three-species food web
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Eco-epidemiological model with multi functional response. So,we explore the three species
food web Eco-epidemiological model with holling type II functional response( Z(1−ψ)AB

p1+(1−ψ)A ),

Beddington DeAngelis functional response ( f1BC
(1+βB+γC ) and, Crowley martin functional

response α1AC
(1+ηA)(1+µC) as well as hopf bifurcation as a result of this fact.

The main purpose is to investigate how disease affects in a predator-prey relationship.
The section 2 deals with the mathematical formulation. Section 3 contains some of the
preliminary findings. Section 4 depicts the boundary equilibrium points and their stability.
Section 5 investigates the local stability of the interior equilibrium point E∗(a∗, b∗, c∗) and
determines its coexistence state. Section 6 shows the global stability for E∗. In addition, in
Section 7, we looked into Hopf-bifurcation based on refuge ψ. In Section 8, all significant
conclusions are mathematically validated using MATLAB software. This research’s conclu-
sion and the biological implications of our findings are found in Section 9, which concludes
the work.

2. Mathematical Formulation of the Model

Models are developed for a predator-prey system with prey’s refuge and harvesting.

dA
dT = r1A(1− A+B

K )− Z(1−ψ)AB
p1+(1−ψ)A −

α1AC
(1+ηA)(1+µC) −H1E1A,

dB
dT = Z(1−ψ)AB

p1+(1−ψ)A − d1B − f1BC
(1+βB+γC) −H2E2B,

dC
dT = −d2C + nα1AC

(1+ηA)(1+µC) +
n f1BC

(1+βB+γC) ,

 (1)

by the conditions of non-negative termsA(0) = A0 ≥ 0,B(0) = B0 ≥ 0 and C(0) = C0 ≥ 0.

Table 1. Environmental illustration of the system

Parameters Environmental illustration

A,B, C Susceptible prey, In f ected prey, Predator
Z , r, ψ In f ection rate, Growth rate o f prey, re f uge o f prey
K, η, E Carrying capacity, Predator′s handling time, harvesting e f f ort

p1 and β Hal f − saturation constant among in f ected prey and predators
α1, n Rate o f predation on susceptible prey, conversion o f prey to predators
γ, µ Magnitude o f inter f erence among predators by crowley and beddington

f1 Capture rate by predator on susceptible prey
d1 and d2 Death rate o f in f ected prey and predators
H1,H2 Catchability coe f f icient o f susceptible and in f ected prey

To reduce the system(1) parameter’s, it is appropriate to change the variables as
a = A

K , b = B
K , c = C

K , and the dimensionless time t = ZKT .
In non-dimensional form,

da
dt = ra(1− a− b)− ab(1−ψ)

p+(1−ψ)a −
αac

(1+ηa)(1+µc) − h1a,
db
dt = (1−ψ)ab

p+(1−ψ)a − db− θbc
(1+βb+γc) − h2b,

dc
dt = −δc + nαac

(1+ηa)(1+µc) +
nθbc

(1+βb+γc)

 (2)

where,
r = r1

ZK , α = α1
ZK , p = p1

K , h1 = H1E1
ZK , θ = f1

ZK , h2 = h2E2
ZK , d = d1

ZK , δ = d2
ZK .

The system’s initial conditions are a(0) = a0 ≥ 0, b(0) = b0 ≥ 0 and c(0) = c0 ≥ 0.
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3. Positive Invariance and Boundedness

Let X ≡ (a(t), b(t), c(t))T and S(X) = (S1(X),S2(X),S3(X))T , where

S1(X) = ra(1− a− b)− ab(1− ψ)

p + (1− ψ)a
− αac

(1 + ηa)(1 + µc)
− h1a,

S2(X) =
(1− ψ)ab

p + (1− ψ)a
− db− θab

(1 + βb + γa)
− h2b,

S3(X) = −δc +
nαac

(1 + ηa)(1 + µc)
+

nθbc
(1 + βb + γc)

.

Since, the model (2) can be stated as dX
dt = S(X) where S : C+→R3

+ with X(0) = X0∈R3
+.

Thus, Sk∈C∞(R) for k = 1, 2, 3. The Lipschitzian function is S and continuous onR3
+. The

model (2) contains positive initial conditions. Hence, (2) the regionR3
+ is an invariant.

Theorem 1. All the system’s solutions (2) are bounded inR3
+.

Proof. Let (a(t), b(t), c(t)) are the solutions of the system (2) with non-negative conditions.
Since, da

dt ≤ a(1− a).
lim supt→∞ a(t) ≤ 1. (By the above inequality)
Let ρ = a + b + c.

dρ

dt
=ra(1− a)− ab(r +

(1− ψ)

p + (1− ψ)a
)− αac(1− n)

(1 + ηa)(1 + µc)
− h1a +

(1− ψ)ab
p + (1− ψ)a

− db

− θbc
(1 + βb + γc)

(1− n)− h2b− δc,

≤ ra(1− a)− h1a− abr− b(d + h2)− δc, (since n < 1)),
≤ r

4 − h1a− b(d + h2)− δc (since Max {ra(1− a)} = r
4 ),

≤ r
4 − βρ. where, β = min {h1, d + h2, δ}.

Thus, we have dρ
dt + βρ ≤ r

4 . By differential inequality theory, we have 0 < ρ≤ r
4β (1−

exp−βt
) + ρ(a0, b0, c0)exp−βt. For t→∞, since 0 < ρ ≤ r

4β . So, every solutions of model (2)
are confined to non-negative initial conditions around Ω.
where, Ω = {(a, b, c) ∈ R3

+ : a + b + c ≤ r
4β+ ∈}.

Hence, the result.

4. Boundary Equilibrium Points

• E0 is the point of trivial Equilibrium. Here, E0 (0, 0, 0) exists.
• E1, diseased prey and no predator Equilibria, E1 (

r−h1
r , 0, 0) exists for h1 < r.

• E2 is the equilibria with no predator, E2 (ā, b̄, 0) where ā = p(d+h2)
(1−d−h2)(1−ψ)

and

b̄ = (r(1−a)−h1)(p+(1−ψ)a)
r+(1−ψ)

. E2 exists for p(d + h2) < (1− d− h2) and h1 < r(1− a).

• E3 is the equilibria with no disease, E3 (ā, 0, c̄) where ā = δ(1+µc)
nα−ηδ(1+µc) and

c̄ = (r(1−a)−h1)(1+ηa)(1+µ)
α . E3 exists for ηδ(1 + µc) < nα and h1 < r(1− a).

• E∗ is the equilibria of interior which is positive, by system (2) E∗ (a∗, b∗, c∗) exists for
δ > nα, (1 + βb∗ + γc∗) > 0, r(1− a∗ − b∗) > h1 − b∗, αp > 0. Where,
a∗ = (p+(1−ψ))((d+h2)+(1+βb∗+γc∗)+θc∗)

(1−ψ)(1+βb∗+γc∗) , b∗ = (1+β+γc∗)(δ(1+ηa∗)(1+µc∗)−nαa∗)
(1+ηa∗)(1+µc∗)nθ

,

c∗ = ((1+ηa∗)(1+µ))(p+(1−ψ)a∗(r(1−a∗−b∗)−h1)−b∗(1−ψ))
α(p+(1−ψ)a∗) .
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5. Local stability

The Jacobian matrix for local stability analysis at an arbitrary point (a, b, c) is

n11 =r(1− 2a− b)− pb(1− ψ)

(p + a− ψa)2 −
αc

(1 + ηa)2(1 + µc)
− h1, n12 = −ar− a(1− ψ)

a− aψ + p
),

n13 =− αa
(1 + µc)2(1 + ηa)2 , n21 =

pb(1− ψ)

(p + a− ψa)2 , n31 =
αcn

(1 + ηa)2(1 + µc)
,

n22 =
a(1− ψ)

a− aψ + p
− d− cθ(1 + γc)

(1 + βb + γc)2 − h2, n23 = − bθ(1 + βb)
(1 + βb + γc)2 ,

n32 =
θcn(1 + γc)

(1 + βb + γc)2 , n33 = −δ +
αan

(1 + µc)2(1 + ηa)
+

θbn(1 + βb)
(1 + βb + γc)2 .

Theorem 2. In the system (2), we have

1. The equilibria of trivial point E0(0, 0, 0) is locally stable if r < h1 orelse, it is unstable.
2. The equilibria without infection and predator E1(

r−h1
r , 0, 0) is locally asymptotically stable if

r < h1, −d− h2 > (r−h1)(1−ψ)
(r−h1)(1−ψ)+p , δ < (r−h1)nα

1+η(r−h1)
.

3. The equilibria with no predator (ā, b̄, 0) is locally asymptotically stable if Y11 > 0, Y12 > 0,

and δ > nαā
1+η ā +

bnθ(1+βb)
(βb+1)2 .

Proof. 1. The eigen values of E0(0, 0, 0) are r− h1, −d− h2, -δ. Hence, it is locally asymp-
totically stable when r < h1 if not, it is unstable.
2. The eigen values of E1(

r−h1
r , 0, 0) are h1 − r, (r−h1)(1−ψ)

(r−h1)(1−ψ)+p − d − h2, δ + (r−h1)nα
(r+η(r−h1)

.

Hence, it is locally asymptotically stable if r < h1, −d− h2 > (r−h1)(1−ψ)
(r−h1)(1−ψ)+p , δ < (r−h1)nα

1+η(r−h1)
.

If not, it is unstable.
3. The Jacobian matrix is

n11 =r(1− 2ā− b̄)− pb̄(1− ψ)

(p + ā− ψā)2 − h1, n12 = −ār− ā(1− ψ)

ā + āψ + p
), n13 = − αā

1 + η ā
,

n21 =
pb̄(1− ψ)

(p + ā− ψā)2 , n22 =
ā(1− ψ)

ā− āψ + p
− d− h2, n23 = − b̄θ(1 + βb)

(βb̄ + 1)2 , n31 = 0, n32 = 0,

n33 =− δ +
ānα

1 + η ā
+

bnθ(1 + βb)
(βb + 1)2 .

Therefore, the characteristic form of J(E2) is (n33 − λ)(λ2 + Y11λ + Y12) = 0. Where
Y11 = −(n11 + n22) and Y12 = n11n22 − n12n21. Hence, the one of the eigenvalue of the
above characteristic equation is n33, which is negative, and the other two eigenvalues are
also must be negative. Hence, E2 is locally asymptotically stable if Y11 > 0, Y12 > 0 and
δ > ānα

1+η ā +
bnθ(1+βb)
(βb+1)2 .

Theorem 3. The equilibria with no infection (ā, 0, c̄) is locally asymptotically stable if Y11 > 0,
Y12 > 0 and −(d + cθ(1+γc)

(βb+γc+1)2 + h2) >
a(1−ψ)

a−aψ+p . (This proof is similar to Theorem 2.(3) )

Theorem 4. The point of equilibria E∗ is locally asymptotically stable if Y1 > 0, Y3 > 0, and
Y1Y2 −Y3 > 0.
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Proof. The Jacobian form of system (2) at E∗(a∗, b∗, c∗) Where,

g11 =r(1− 2a∗ − b∗)− pb∗(1− ψ)

(p + a∗ − ψa∗)2 −
αc∗

(1 + ηa∗)2(1 + µc∗)
− h1,

g12 =− a∗r− a∗(1− ψ)

a∗ − a∗ψ + p
), g13 = − αa∗

(1 + µc∗)2(1 + ηa∗)2 , g21 =
pb∗(1− ψ)

(p + a∗ − ψa∗)2 ,

g31 =
αc∗n

(1 + ηa∗)2(1 + µc∗)
, g22 =

a∗(1− ψ)

a∗ − a∗ψ + p
− d− c∗θ(1 + γc∗)

(1 + βb∗ + γc∗)2 − h2,

g23 =− b∗θ(1 + βb∗)
(1 + βb∗ + γc∗)2 , g32 =

θc∗n(1 + γc∗)
(1 + βb∗ + γc∗)2 ,

g33 =− δ +
αa∗n

(1 + µc∗)2(1 + ηa∗)
+

θb∗n(1 + βb∗)
(1 + βb∗ + γc∗)2 .

The equation for the cubic characteristic of J(E∗) is

λ3 + Y1λ2 + Y2λ + Y3 = 0. (3)

Y1 = −(g11 + g22 + g33) , Y2 = −(g12g21 + g13g31 + g23g32 − g11g22 − g11g33 − g22g33),
Y3 = −(g11g22g33 + g12g23g31 + g13g21g32 − g13g31g22 − g12g21g33 − g11g23g32). If Y1 > 0,
Y3 > 0, and Y1Y2 −Y3 > 0. Negative real parts are the root of characteristic equation iff
Y1, Y3, and Y1Y2 −Y3 > 0. By, Routh-Hurwitz E∗ is locally asymptotically stable.

6. Global Stability

Theorem 5. If E∗ is globally asymptotically stable in H = {(a, b, c) : a > a∗, b > b∗and
c > c∗or a < a∗, b < b∗and c < c∗}

Proof. A Lyapunov function is in the form of

L1(a, b, c) = L2(a− a∗ − a∗ln
a
a∗

) + (b− b∗ − b∗ln
b
b∗

) + L3(c− c∗ − c∗ln
c
c∗
),

where L2,L3 are positive constant.
Differentiating L1 with respect to t along with the solution of (2),
dL1
dt = ( a−a∗

a ) da
dt + L2(

b−b∗
b ) db

dt + L3(
c−c∗

c ) dc
dt

= [r(1− a− b)− (1−ψ)b
p+(1−ψ)a −

αc
(1+ηa)(1+µc) − h1](a− a∗)

+ L2[
(1−ψ)a

p+(1−ψ)a − d − θc
(1+βb+γc) − h2](b − b∗) + L3[−δ + nαa

(1+ηa)(1+µc) +
nθb

(1+βb+γc ](c − c∗).
Therefore,
dL1
dt = −(a− a∗)[r(a + b)− (a∗ + b∗)] + (1− ψ)( b

p+(1−ψ)a −
b∗

p+(1−ψ)a∗ )

+ α( c
(1+ηa)(1+µc) −

c∗
(1+ηa∗)(1+µc∗) )]−L2(b− b∗)[(1− ψ)( a

(p+(1−ψ)a) −
a∗

(p+(1−ψ)a∗) )

− θ( c
a+(1+βb+γc) −

c∗
1+βb∗+γc∗ ]−L3(c− c∗)n[( α(a−a∗)+cµ∗(a−a∗)

(1+ηa)(1+µc)(1+ηa∗)(1+µc∗) )

+ θ( (b−b∗)+γ(bc∗−b∗c)
(1+βb+γc)(1+βb∗+γc∗) )].

We see that dL1
dt , the region is negtive:

H = {(a, b, c) : a > a∗, b > b∗ and c > c∗)or a < a∗, b < b∗ and c < c∗} and as a result, L is
a Lyapunov function for all solutions in H.

7. Hopf-bifurcation Analysis

Theorem 6. Hopf-bifurcation occuring in the model (2) suppose that the bifurcation parameter ψ
exceeds a substantial value. The occurrence of the following Hopf-bifurcation criteria, ψ = ψ∗

1. H(ψ∗)I(ψ∗)−J (ψ∗) = 0,
2. d

dψ (Re(ρ(ψ)))|ψ=ψ∗ 6= 0, where ρ is the zero of the characteristic equation, which equates to
the equilibrium point’s positive value.

Proof. For ψ = ψ∗, let the characteristic equation (3) implies that (ρ2(ψ∗)+I(ψ∗))(ρ(ψ∗)+
H(ψ∗)) = 0. (i.e) ±i

√
I(ψ∗) and −H(ψ∗) are the roots of the equation (7). To establish
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the Hopf-bifurcation exists at the point , we must fulfill the transversality requirement.
ψ∗ = ψ. d

dψ (Re(ρ(ψ)))|ψ=ψ∗ 6= 0. For all ψ, the general roots of the form ρ1,2 (ψ) = r(ψ)±
is(ψ), and ρ3(ψ) = −H(ψ). Now, we check the condition d

dψ (Re(ρj(ψ)))|ψ=ψ∗ 6= 0, j =
1, 2.Let, ρ1(ψ)= r(ψ) + is(ψ) in (7), we get γ1(ψ) + iγ2(ψ) = 0, where, γ1(ψ) = r3(ψ) +
r2(ψ)H(ψ) − 3r(ψ)s2(ψ) − s2(ψ)H(ψ) + r(ψ)I(ψ) + H(ψ)I(ψ), γ2(ψ) = 3r2(ψ)s(ψ) +
2r(ψ)s(ψ)H(ψ)− s3(ψ) + s(ψ)I(ψ).
In order to complete the equation (7), we must have γ1(ψ) = 0 and γ2(ψ) = 0, then
differentiating γ1 and γ2 with respect to ψ. We have

dγ1
dψ = T1(ψ)r

′
(ψ)− T2(ψ)s

′
(ψ) + T3(ψ) = 0, (4)

dγ2
dψ = T2(ψ)r

′
(ψ) + T1(ψ)s

′
(ψ) + T4(ψ) = 0, (5)

T1(ψ) = 3r2(ψ) + 2r(ψ)H(ψ)− 3s2(ψ) + I(ψ),
T2(ψ) = 6r(ψ)s(ψ) + 2s(ψ)H(ψ),

T3(ψ) = r2(ψ)H′(ψ)− s2(ψ)H′(ψ) + J ′(ψ) + I ′(ψ)r(ψ),

T4(ψ) = 2r(ψ)s(ψ)H′(ψ) + s(ψ)I ′(ψ).

r
′
(ψ) = −T1(ψ)T3(ψ) + T2(ψ)T4(ψ)

T 2
1 (ψ) + T 2

2 (ψ)
. (6)

Substituting r(ψ) = 0 and s(ψ) =
√
I(ψ) at ψ = ψ∗ on T1(ψ), T2(ψ), T3(ψ) and T4(ψ).

So, T1(ψ
∗) = −2I(ψ∗), T2(ψ

∗) = 2
√
I(ψ∗)H(ψ∗), T3(ψ

∗) = −I(ψ∗)H′(ψ∗) + J ′(ψ∗),
T4(ψ

∗) =
√
I(ψ∗)I ′(ψ∗).

r
′
(ψ∗) = J ′ (ψ∗)−(H(ψ∗)I ′ (ψ∗)+I(ψ∗)H′ (ψ∗))

2(I2(ψ∗)+H2(v∗)) , (7)

If J ′(ψ∗)− (H(ψ∗)I ′(ψ∗) + I(ψ∗)H′ψ∗)) 6= 0,
(i.e) d

dψ (Re(ρj(ψ)))|ψ=ψ∗ = r
′
(ψ∗) 6= 0. j = 1, 2, and ρ3(ψ

∗) = −H(ψ∗) 6= 0.

Thus, the condition J ′(ψ∗)− (H(ψ∗)I ′(ψ∗) + I(ψ∗)H′(ψ∗)) 6= 0, the transversality crite-
ria are confirmed, and the system (2) experiences Hopf-bifurcation at ψ = ψ∗.

8. Numerical simulation

In this section, a few simulations on the system (2) that are performed to support the
theoretical conclusions.The refuge ψ is used as a control parameters. For the fixed parameter,
MATLAB and MATHEMATICA software tools are used to carry out the simulation. Here,
r = 0.1, d = 0.1, δ = 0.2, θ = 0.23, µ = 0.15, η = 0.14, α = 0.4, ψ = variable. For Bifurication
of refuge ψ, if ψ = 0.2, the model (2) of positive equilibria is asymptotically stable E∗(0.52754,
0.0916718, 0.204662) and the other parameter values are the identical. As a result of
increasing the bifurcation parameter value, ψ = 0.5, the model(2) lost its stability, resulting
it is asymptotically unstable at E∗(0.53814, 0.0917798, 0.320138). Then, the model(2) passes
the transversality conditions for (Re(ρ(ψ)))|ψ=ψ∗ = 0.002105 6= 0. The graph depicts the
system’s (2) behavioral alterations at refuge, ψ = 0.5.
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Figure 1. Dynamical changes of model(2) at refuge ψ = 0.5

9. Conclusion and discussions

We explored an eco-epidemiological model involving refuge of prey and harvesting in
prey with illness in the prey population, in which the predator predates both the sick and
susceptible prey. The results of the boundedness and positivity indicate that the constructed
system (2) is well behaved biologically. The intrinsic growth rate of the susceptible prey is
smaller than the harvesting rate of the susceptible prey, the population will go extinct. The
system’s local stability at each biologically feasible equilibrium point and the equilibria for
interior (2) has been established.The analytic and numerical results for hopf bifurication
are observed above. This study demonstrates complex behavior, such as infectious prey
refuge and prey harvesting, which provide rice to rich dynamics.
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