

01-30 November 2023 | Online

Lead Optimization of Top compounds targeting Eg5

Chaired by **Dr. Alfredo Berzal-Herranz** and **Prof. Dr. Maria Emília Sousa**

Damilola Bodun^{1,*} and Damilola Omoboyowa¹

¹ Department of Biochemistry, Adekunle Ajasin Univerisity, Akungba-Akoko

* Corresponding author: dbodun56@gmail.com

Graphical Abstract

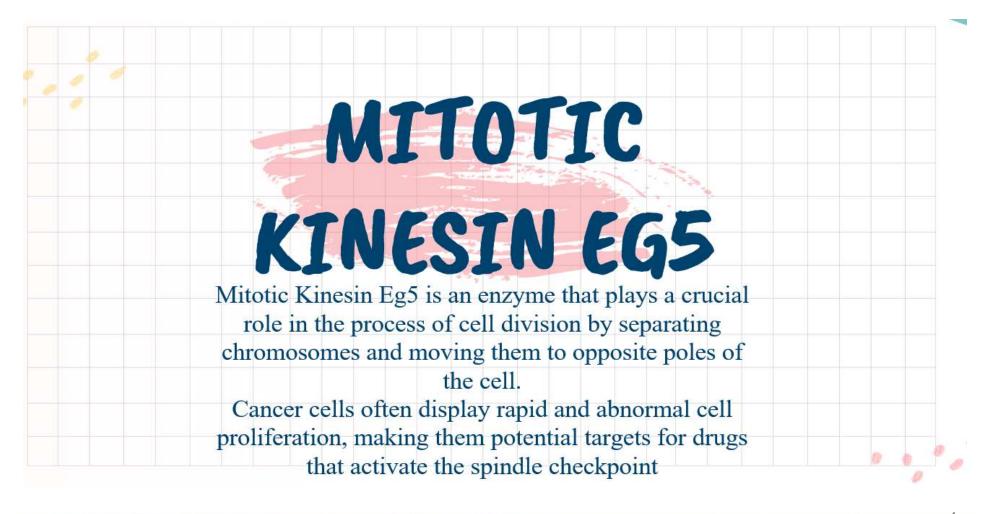
Lead Optimization of Top compounds targeting Eg5

Target	Hit	Lead	Pre-clinical	Clinical
Discovery	Identification	Optimization	trials	trials
Identify	Screen for Hit		Evaluate	Evaluate
disease	compounds to		pharmaco-	safety, dosage,
modulating	inhibit target		kinetic	efficacy and
target protein	protein		properties	adverse effects

01-30 November 2023 | Online

Cancer remains a paramount global health challenge with multifaceted mechanisms driving its proliferation. One pivotal target in this complex landscape is the Mitotic kinesin Eg5, a key player during cell division. Inhibiting this protein holds immense potential to combat cancer effectively. Building on a recent breakthrough, our study aims to enhance the inhibitory efficacy against Eg5 by optimizing a promising novel compound identified in our previous research, which has shown superior inhibitory properties compared to a standard treatment. As we progress through the drug discovery funnel, our focus shifts to lead optimization. We seek to elevate the binding affinity of the lead compound while simultaneously enhancing its Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties. This optimization phase is critical for ensuring the compound's therapeutic efficacy, safety, and potential for clinical translation. Our proposed research aligns with the urgent need for innovative cancer treatments and addresses a vital aspect of drug development. By refining the lead compound's molecular interactions and ADMET profile, we endeavor to contribute to the advancement of targeted cancer therapy, potentially bringing us closer to a transformative solution in the battle against cancer.

Keywords: Lead Optimization; Medicinal Chemistry; QSAR



01-30 November 2023 | Online

Introduction

01-30 November 2023 | Online

Introduction

Computational Biology and Chemistry 104 (2023) 107865

QSAR-based virtual screening of traditional Chinese medicine for the identification of mitotic kinesin Eg5 inhibitors

Damilola S. Bodun^{a,*}, Damilola A. Omoboyowa^a, Olaposi I. Omotuyi^b, Ezekiel A. Olugbogi^a, Toheeb A. Balogun^c, Chiamaka J. Ezeh^d, Emmanuel S. Omirin^a

^a Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria

^b Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, Ado Ekiti, Nigeria

^c Department of Biological Sciences, University of California, San Diego, San Diego, CA, United States

^d Department of Biochemistry, Micheal Okpara University of Agriculture, Umudike, Abia State, Nigeria

ARTICLEINFO

Keywords:

OPLD

In-silico

TCM

DFT

Human Eg5

ABSTRACT

Cell division is a crucial process for the growth and development of all living organisms. Unfortunately, uncontrolled cell division and growth is a hallmark of cancer, leading to the formation of tumors. The Human Eg5 protein, also known as the mitotic kinesin Eg5, plays a vital role in the regulation of cell division and its dysfunction has been linked to cancer development. This study aimed to identify new inhibitors of the Human Eg5 protein. Over 2000 Traditional Chinese Medicine (TCM) compounds were screened through a combination of virtual and structure-based screening methods. The top five compounds (Compounds 1–5) showed improved binding affinity to Human Eg5 compared to the standard drug Monastrol, as demonstrated by docking and MMGBSA scores, as well as interactions with key amino acids GLY 116 and GLY 118. The potential absorption and bioactivity of these compounds were also predicted through ADMET properties and a QSAR model, respectively, and showed improved results compared to the standard. Further quantum mechanics docking confirmed the better binding affinity of the lead compound, Compound 1. Our findings highlight Compound 1–5 as promising hits for inhibiting Human Eg5 and the need for experimental validation of their potential in treating cancer.

Figure 1: Snapshot of the previous study

01-30 November 2023 | Online

Introduction

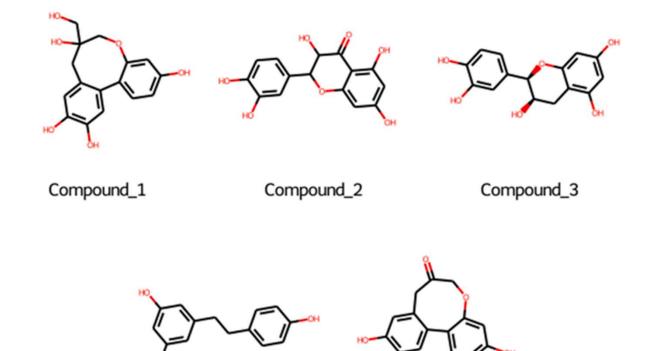


Figure 2: Top compounds from the Prior Study.

Compound_5

Compound_4

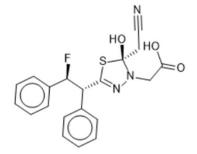
01-30 November 2023 | Online

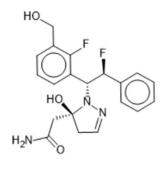
Materials and Methods

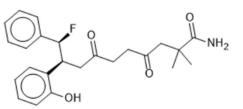
Workflow

Generated analogues (n=12500)	
Virtual Screening using a QSAR model (pIC50 >6.0) (n= 1604)	
HTVS Docking (Docking Score < -7.0kcal/mol) (n=233)	
SP Docking (Docking Score < -7.9kcal/mol) (n=100)	
XP Docking	
Induced Fit Docking (n=5)	
QM/MM Docking (n= 5)	

Figure 3 : Workflow of this study.


- 01–30 November 2023 | Online
- Using a Deep learning platform, we generated 12500 analogues of the top 5 compounds from the prior study (Figure 2)
- The generated analogues had a better binding affinity compared to the cocrystallized ligand.
- The better binding affinity were confirmed using free energy calculations (MM-GBSA), Induced fit docking and Quantum based Docking (Table 2-4).
- Also a detailed QSAR model was built using the list of ChembL inhibitors. The model predicted the better inhibitory potential of the compounds compound to the standard (Table 1).

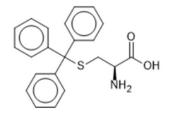



01-30 November 2023 | Online

Results and Discussion


Compound 9794

Compound 8592


Compound 9786

Compound 2744

O OH O O N-N OH F

Compound 3246

Co-crystallized Ligand (Reference Ligand)

Figure 4: Top compounds from this study compared to the co-crystallized ligand (Reference Ligand).

01-30 November 2023 | Online

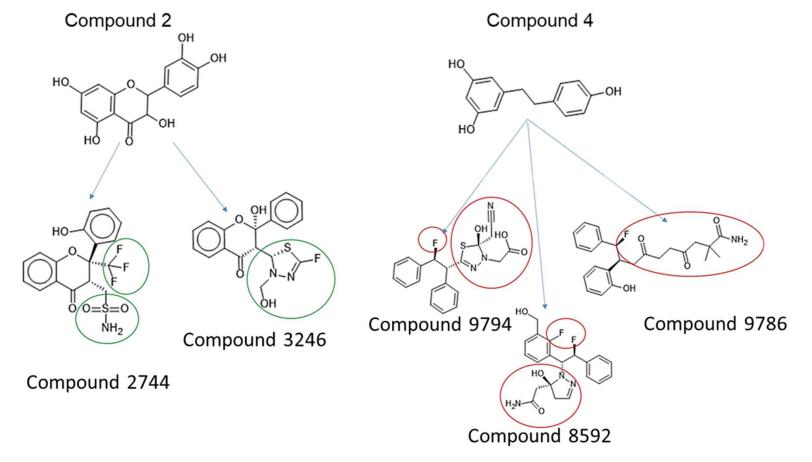


Figure 5: Optimized part of the analogues

-10

01–30 November 2023 | Online

Table 1: Top compounds and their predicted pIC50 values

Compound	Pred Y
Compound 9794	6.267
Compound 8592	6.298
Compound 9786	6.080
Compound 2744	6.056
Compound 3246	6.248
Co-crystallized Ligand	5.893
(Standard)	

01-30 November 2023 | Online

Table 2: Docking and MMGBSA scores of the top compounds

Compound	XP docking	MMGBSA
Compound 9794	-8.559	-66.9
Compound 8592	-8.557	-59.44
Compound 9786	-8.517	-56.76
Compound 2744	-8.356	-60.1
Compound 3246	-8.354	-59.3
Co-crystallized Ligand		
(Standard)	-8.323	-76.98
	-0.525	-70.70

01-30 November 2023 | Online

Table 3: Docking and IFD scores of the top compounds after Induced fit docking

Compound	Docking score	IFD score
Compound 9794	-8.529	-717.4
Compound 8592	-7.948	-716.93
Compound 9786	-9.15	-721.33
Compound 2744	-8.799	-719.78
Compound 3246	-8.094	-717.07
Co-crystallized Ligand		
(Standard)	-8.821	-718.16

01-30 November 2023 | Online

Table 4: Docking and Glide eModel scores of top compounds after Quantum based docking .

Compound	Docking score	Glide eModel
Compound 9794	-8.678	-70.735
Compound 8592	-9.268	-58.405
Compound 9786	-9.15	-76.568
Compound 2744	-8.279	-63.953
Compound 3246	-8.327	-55.717
Co-crystallized Ligand		
(Standard)	-9.017	-87.309

The 9th International Electronic Conference on Medicinal Chemistry 01-30 November 2023 | Online

Conclusions

The results of this study confirms the better binding affinity of the optimized analogues compared to the co-crystallized ligand after Rigid docking, Induced Fit Docking and Quantum based docking. However a more detailed calculation which involves MD simulation will be done. Also these compounds should be tested for both *in vitro* and *in vivo* test for their efficacy.

01-30 November 2023 | Online

Acknowledgments

