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Abstract: In an era marked by tools like Artificial Intelligence (AI), Machine Learning (ML) and
remote sensing (RS), agriculture is a primary beneficiary. These technologies help to optimize
agricultural productivity, by improving resource usage and increasing yield. They not only optimize
resource use but also adapt to climate change, necessitating the management of risks associated
with agricultural practices. Vegetation Indices (VI) such as Normalized Difference Vegetation Index
(NDVI) are relatively simple yet useful algorithms that can be used to implement precision agriculture
(PA). Optical satellite images can sense the reflected lights coming from leaves which can provide
various crop development information used to implement PA. Agriculture sector is important for
regional economy. If managed properly, many problems related to this sector like climate change,
environmental problems, and economic development, can be eliminated. PA applications can be used
to establish regional management policies. This study involves monitoring agricultural production
both seasonally and daily using Sentinel-2 multi-spectral time-series data. Time-series images from
2017 to 2022 are analyzed to estimate phenological dates of crops. To understand these stages, a
combination of MSAVI (Modified Soil Adjusted Vegetation Index) and NDVI is used. First, mean
MSAVI is calculated by the year, depending on thresholds, NDVI values are replaced with MSAVI
values for certain dates, and phenological dates are determined according to the merged mean
Vegetation Index (VI) values. The results are compared with Crop Progress Report (CPR) published
by United States Department of Agriculture (USDA) with Root Mean Square Error (RMSE). After
finding the stages, the field is mosaicked for each stage for each year. For the bare soil dates,
Normalized Difference Salinity Index (NDSI) is calculated to understand the change of soil salinity.
For the dates of emergence and silking MSAVI is used. For the dough, dent, mature and harvest
stages NDVI is used. To understand daily changes, object–oriented and pixel-based methods (land
segmentation) for field model are used to detect trends in the field. Standard deviation of every pixel
is calculated and clusters are created with k-means clustering algorithm. The field model includes the
characteristics of the field. In PA, site specific solutions are extremely important to get the optimum
results. Since agricultural events have a great effect on agricultural applications, using meteorological
data is the main milestone to improve this study. Overall, this research aims to contribute to regional
agricultural production and management modules by using remote sensing and machine learning
technology.

Keywords: remote sensing; precision agriculture; machine learning; image processing; vegetation
index; regional agricultural management, phenology, NDSI; MSAVI; NDVI

1. Introduction

In order to meet the nutritional needs of the increasing population, there is a need
to implement agricultural practices in smarter and more strategic ways. These advanced
but careful methods are needed not only to meet demand but also to optimize costs while
considering sustainability. One of the main information resource to understand a field is
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looking its time series history [11]. Agricultural RS, which mainly uses surface reflectance
information of visible, near - infrared and shortwave - infrared regions of electromagnetic
spectrum, are used to handle site - specific solutions to implement PA. GeoAI (Geospatial
Artificial Intelligence) is a sub-field of Artificial Intelligence (AI) which focuses on the
applications of AI to geospatial data and problems. GeoAI methods can analyze remote
sensing data to make better predictions for implementing PA.

It has been known that NDSI is used at the very beginning of planting to evaluate the
soil conditions. It measures the salt content [15] in the soil which can impact the growth
and yield of crops. MSAVI can be used to monitor early growth because it eliminates the
background effects in areas where soil is not completely covered by vegetation [2]. NDVI is
used when the crops have grown to a stage where the fields are fully covered by vegetation.

Phenological stages of crops refer to the distinct phases in the life cycle of a crop.
Understanding these stages is crucial for managing crop growth as they determine the
optimal timing for various agricultural activities like irrigation, application of fertilizers
and pesticides, and harvest. Timing is crucial for agricultural practices so that the in -
season interventions can be done on time and future seasons can be planned for optimum
production.

The motivation for this study emerged from the potential that technology holds for
revolutionizing agriculture. Vegetation Indices (VI) such as NDVI, MSAVI, NDSI can be
used to implement precision agriculture (PA), which optimizes resource use, increases
yield, handles risk management and so on. Additionally, the usage of ML algorithms for
predicting phenological shifts in crops enables optimal agricultural planning for future
seasons. Thus, the combination of remote sensing and data-driven approach can create a
transformative impact on regional agricultural practices and policies.

There are some novel methods to estimate phenologic dates [3], [6], however these
works mostly focus on regional based and use satellite data with low temporal and spatial
resolution. In this study, phenologic dates are tried to estimate field level with high spatial
and temporal resolution satellite images by using MSAVI and NDVI. For bare soil stages,
NDSI used to understand soil salinity. Also, after deciding the dates, phenological stage
rasters are mosaicked in between to understand field dynamics in time series manner.
These mosaicked rasters are studied to create meaningful results and clustered according
to the temporal data.

2. Materials and Methods
2.1. Study Site

Illinois is the top farming state in the United States and is in a region known as the
Corn Belt. The main crop grown in the state is corn and soybeans. In this study, one field
located at Illinois is selected. Corn is the only product grown in this field between the years
2017 and 2022. This information is taken from crop type maps published by United States
Department of Agriculture - National Agricultural Service (NASS). The field is located
over 40.128° to 40.142° N latitude and 88.335°W to 88.35°W longitude and covers an area of
about 240 ha.

https://www.nass.usda.gov/Research_and_Science/Crop_Progress_Gridded_Layers/index.php
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Figure 1. Study Site

2.2. Remote Sensing Data

Sentinel satellites are part of European Space Agency’s (ESA) Copernicus Program. In
this study Sentinel 2 bands are used between the years 2017 and 2022.

2.3. Crop Progress Report

United States Department of Agriculture publishes Crop Progress Report (CPR) which
gives information about phenological dates of crops. For this study, CPR data downloaded,
interpolated, and masked by selected field area. According to the mean pixel values for
every week, a table is created and crop phenological stages are written to the corresponding
values. in CPR report, corn phenological stages are declared as planted, emerged, silking,
dough, dent, mature and harvest (Table 1).

Table 1. Description of phenological stages for corn

Stage Explanation1

Planted When crops are planted
Emerged When the plants can be seen above the soil
Silking When thread-like filaments appear from the tips of the ears
Dough When about half the kernels have indents and all kernels have a doughy substance

Dent When every kernel is fully indented, and the ear feels solid with mostly no liquid
inside the kernels

Mature The plant is considered frost-resistant, corn is nearly ready for harvesting, the outer
layers are open, and no green leaves are there

Harvest The plant is collected from the field, either by cutting, threshing, or other means
1 USDA - NASS

2.4. Phenology Estimation Model

In this study for detection of phenology stages, combination of threshold based and
slope-based method is developed. The first step of this method is to find MSAVI and
NDVI time series values. Satellite images can contain some misinformation because of
atmospheric noises, clouds, and shadows. Pre-Processing steps are handled for new merged
time series vegetation index data to eliminate these kinds of noises and misinformation
and to smooth the time series data (Figure 2). In this study, median filter [7] and Savitzky -
Golay (SG) filter [16] are used. First, median filter is applied, aiming to smooth the time
series by removing observations that deviate from the local trend. The process is done by
replacing each value with the median value during its five - day temporal moving window.
Then, SG filter is implemented to the filtered time series data. In SG filter, there are two
parameters, window length and polynomial order. The window length specifies how
many neighboring points are used for the polynomial fit. The polynomial order defines
complexity of the fitting polynomial.

https://www.nass.usda.gov/Research_and_Science/Crop_Progress_Gridded_Layers/index.php
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Figure 2. Original MSAVI, original NDVI and Merged Vegetation Index Data (MSAVI bigger then
0.6 is replaced with NDVI values) (First Graph), Pre-Processing steps applied to Merged Vegetation
Index (Second Graph)

After that, the dates and values of MSAVI having mean values bigger than 0.6 are
replaced with NDVI values, and a new data set is created. VI thresholds are determined
to estimate emerged, silking, and dough stages. With the combined VI dataset, slope
based method is studied to estimate dent, mature and harvest stages. Planted stage is not
estimated, instead bare soil dates are extracted from MSAVI graph to measure soil salinity.

2.5. Field Characteristics Model

Based on the crop stage dates determined with phenology estimation model, raster
data belonging to those dates are mosaicked. For bare soil dates, NDSI images are merged.
For emergence and silking stages, MSAVI rasters are merged, and for dough, dent, mature
and harvest NDVI rasters are merged. Mosaicked are created first as year based, then the
cluster information coming from the years mosaicked again. At the end, one raster layer
for every stage is created and standard deviation is calculated for the pixels. The time
series standard deviation layer gives information for pixel variability over time [13]. This
information is important to understand field on site specific. After extracting standard
deviation raster, with k-means algorithms, clusters are created. These clusters show how
the field needs to be cared (Figure 4).

3. Results

After running threshold and slope based phenological detection algorithm, the results
are compared to CPR dates. In Table 2, estimated and CPR based phenological dates for
the year 2021 can be seen. Same table is created for the other years. For the entire study
years, depending on week of the year (WOY), the phenological dates are marked with CPR
dates (Figure 3).

Table 2. 2021 - Estimated dates are compared with CPR dates

2021 Threshold Based CPR Based

Planted - 9 April
Emerged 26 March 30 April
Silking 30 May 4 Jun
Dough 3 August 16 July
Dent 23 August 13 Augustus

Mature 7 September 27 Augustus
Harvest 27 September 17 September

The accuracy of the combined estimation method is evaluated using the RMSE (Root
Mean Square Error) method. To calculate RMSE, start dates of phenological stages are
turned to Day of Year (DOY). The overall RMSE for estimating corn phenological stages is
calculated as 7.44 days. A stage-specific analysis reveals that the highest error occurs in the
Emergence stage with an RMSE of 5.58 days, while the lowest error is found in the Silking
stage with an RMSE of 1.67 days. Other stages like Harvest, Dough, Mature, and Dent have
RMSE values of 2.58, 2.97, 3.51, and 3.54 days respectively. When the Emergence stage is
excluded from the dataset, the overall RMSE improves to 4.61 days.

Figure 3. Phenological stages found by threshold and slope based algorithm and from CPR are
marked for week of the year

For the bare soil dates which are the range between 4 February 2021 to 16 March 2021,
NDSI rasters are mosaicked and clustered to understand the bare soil trends. Same process
is applied for the other years (Figure 4).



Environ. Sci. Proc. 2023, 1, 0 5 of 6

Clusters are created depending on the pixel level standard deviation values. These
clusters are named as object - based field characteristics for decision makers to understand
field more precise (Figure 4).

Figure 4. Standard deviations of pixel values in phenological stage rasters and results from the
K-means clustering algorithm. Cluster with high number is calculated depending on high standard
deviation pixels, cluster with low number is calculated depending on low standard deviation pixels.

If crop fields are well-managed, one would anticipate high variability in conditions. On
the other hand, low variability suggests that the land is not being actively managed, or the
land is showing a trend that the area possibly has a characteristic problem. indicating that
the area should be managed differently than entire field [13]. Therefore, the clusters with
high class are showing the problematic areas for different stages. Management decisions
should be based on these classes.

4. Discussion

The model currently investigates corn field in Illinois, and its applicability to other
crops and regions needs further study. Also, there’s room for improvement in the early
stage "Emergence" predictions. Further ground observation work is needed to understand
and correct the field characteristics in the field model. Future work can also focus on
incorporating other factors like weather conditions and soil nutrient content to improve
the model’s robustness.

5. Conclusions

This study exemplifies how the integration of GeoAI, remote sensing, and machine
learning can improve precision agriculture. It not only offers a robust model for understand-
ing and predicting crop phenological stages but also opens roads for more focused and
site-specific agricultural practices. In precision agriculture, right source, right rate, right
time and right place is important. In this study, the right timing is estimated through phe-
nology analysis. Field model, as related to phenology estimation, tries to create solutions
for right source, right place and right rate.
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MSAVI Modified Soil Adjusted Vegetation Index
NDVI Normalized Difference Vegetation Index
VI Vegetation Index
PA Precision Agriculture
AI Artificial Intelligence
GeoAI Geospatial Artificial Intelligence
RMSE Root Mean Square Error
NASS National Agriculture Statistics Service
USDA United States Department of Agriculture
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