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Abstract: Ensuring food security in precision agriculture demands early prediction of corn yield in 

the USA at international, regional, and local levels. Accurate corn yield estimation can play a crucial 

role in averting famine by offering insights into food availability during the growing season. To 

address this, we propose a Concatenate-based 2D-CNN-BILSTM model that integrates Sentinel-1, 

Sentinel-2, and Soil-GRIDs (global gridded soil information) data for corn yield estimation in Iowa 

State from 2018 to 2021. This approach utilizes Sentinel-2 features, including spectral bands (Blue, 

Green, Red, Red Edge 1/2/3, NIR, n-NIR, and SWIR 1/2), and vegetation indices (NDVI, LSWI, DVI, 

RVI, WDRVI, SAVI, VARIGREEN, and GNDVI), alongside Sentinel 1 features (VV, VH, difference 

VV, and VH, and RVI), and Soil data (Silt, Clay, Sand, CEC, and pH) as initial inputs. To extract 

high-level features from this data each month, a dedicated 2D-CNN was designed. This 2D-CNN 

concatenates high-level features from the previous month with low-level features of the subsequent 

month, serving as input features for the model. Additionally, to incorporate single-time soil data 

features, another 2D-CNN was implemented. Finally, high-level features from soil, Sentinel-1, and 

Sentinel-2 data were concatenated and fed into a BILSTM layer for accurate corn yield prediction. 

Comparative analysis against random forest (RF), Concatenate-based 2D-CNN, and 2D-CNN mod-

els, using metrics like RMSE, MAE, MAPE, and the Index of Agreement, revealed the superiority of 

our model. It achieved an Index of Agreement of 84.67% with an RMSE of 0.698 t/ha. The Concate-

nate-based 2D-CNN model also performed well with an RMSE of 0.799 t/ha and an Index of Agree-

ment of 72.71%. The 2D-CNN model followed closely with an RMSE of 0.834 t/ha and an Index of 

Agreement of 69.90%. In contrast, the RF model lagged with an RMSE of 1.073 t/ha and an Index of 

Agreement of 69.60%. Integration of Sentinel 1–2 and Soil-GRIDs data with the Concatenate-based 

2D-CNN-BILSTM model significantly improved accuracy. Combining soil data with Sentinel 1–2 

features reduced RMSE by 16 kg and increased the Index of Agreement by 2.59%. This study high-

lighted the potential of advanced Machine Learning (ML)/Deep Learning (DL) models in achieving 

precise and reliable predictions, which could support sustainable agricultural practices and food 

security initiatives. 
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1. Introduction 

Corn is a highly significant crop in the United States (U.S.) due to its abundance of 

protein, oil, and its high water consumption [1,2]. As the largest corn producer globally, 
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U.S. recorded a corn production of 15.1 billion bushels in 2021 

(https://www.nass.usda.gov/Newsroom/2022/01-12-2022.php). 

With the rapid increase in population, the use of Remote Sensing (RS) technology in 

agriculture has become of paramount economic importance. By using multisensor RS im-

ages, and soil\and weather data, researchers can accurately predict crop yield. Optical RS 

data, obtained from satellites such as Sentinel-2 and Landsat-8, provide high/moderate-

resolution imagery in visible and near-infrared bands. This enables precise assessment of 

vegetation health through indices like NDVI, while also offering detailed information on 

land cover for accurate crop type identification, including corn [3]. Additionally, optical 

RS data allows for monitoring phenological changes, facilitating the tracking of crop 

growth stages and overall health [4]. On the other hand, SAR (Synthetic Aperture Radar) 

images facilitate the structural analysis of vegetation by using different polarizations and 

microwave frequencies. Additionally SAR signals penetrates cloud cover, providing val-

uable insights into the physical structure of crops [5]. The applications of RS in agriculture 

are diverse and encompass product and irrigation management, predicting crop perfor-

mance, disease and fertilizer management, as well as crop classification, among others [3]. 

However, the effectiveness of these applications hinges on various factors including tem-

perature, rainfall, growth indicators, soil type, genotype structure, management practices, 

and nutrient elements [6]. Additionally, radiometric distortions have the potential to ad-

versely affect the spectral bands of optical RS images [7]. To mitigate these challenges and 

enhance the accuracy of yield predictions, a multi-faceted approach is recommended. This 

involves integrating RS data with advanced machine learning (ML) models and employ-

ing data fusion techniques. 

For example, Ma et al. suggested the Bayesian neural network to estimate corn yield 

using MODIS images, GLDAS dataset, PRISM dataset, and SSURGO at the county level 

in the United States between 2005 and 2019 [8]. Desloires et al. introduced a stack of ma-

chine learning techniques, namely RF, SVR, XG-Boost, and MLP, to predict corn yield 

based on Sentinel-2 images captured at field-scale in Iowa and Nebraska from 2017 to 2021 

[9]. Khaki et al. proposed the Deep-Corn network for enhancing crop yield at the filed-

scale by counting corn kernels, which used a shortened VGG-16 for feature extraction at 

different scales [10]. Shah-Hosseini et al. developed the Stacked LASSO method for pre-

dicting corn yield in Illinois, Indiana, and Iowa between 2000 and 2018 using observed 

corn yield, management data, plant population, planting date, and environmental fea-

tures (weather and soil) [11]. Shah-Hosseini et al. also proposed a new CNN-DNN method 

for estimating corn using historical management, environmental, and yield data in the 

United States from 1980 to 2019 [12]. San et al. suggested the CNN-RNN method for pre-

dicting corn yield using MODIS images, weather data, and soil features to extract multi-

level spatiotemporal features at the county level from 2013 to 2016 [13]. Dhaliwal et al. 

proposed the Random Forest model for predicting corn yield using crop management 

data, weather data, and field-level data in the United States between 1992 and 2018 [14]. 

Shah-Hosseini et al. suggested combining the APSIM model with machine learning meth-

ods using plant population, planting date, and weather data for estimating corn yield in 

the United States between 1984 and 2018 [15]. 

Recent studies have demonstrated satisfactory outcomes in estimating crop yield 

[11,16–19]. However, they have less regarded the combination of radar and optical images, 

along with soil data for corn yield prediction. Moreover, most of the studies used CNN-

LSTM for feature extraction, and they have not fully explored the benefits of combining 

high-level features from the previous month with low-level features from the subsequent 

month to improve corn yield [20]. Also, they mostly have employed Long Short-Term 

Memory (LSTM) networks for yield prediction, overlooking the potential of Bidirectional-

LSTM (Bi-LSTM) networks which can integrate both past and future information to en-

hance corn yield forecasting [21]. 

In response to these limitations, we introduce a novel Concatenate-Based 2D-CNN-

BiLSTM model for corn yield estimation at the county level in Iowa. Leveraging Sentinel-
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1 and Sentinel-2 images along with Soil-GRIDs, which provide global gridded soil infor-

mation, our model aims to enhance performance during the growing season. This model 

offers an innovative approach to feature integration, effectively capturing short-term fluc-

tuations and long-term trends in corn growth patterns. Additionally, the incorporation of 

Soil-GRIDs data provides crucial insights into soil characteristics, augmenting the model’s 

capacity to account for diverse soil conditions. 

2. Materials and Methods 

2.1. Study Area 

The study area was located in IOWA State of U.S., which (see Figure 1). The research 

was done during the years 2018 to 2021 on corn. Corn is planted in Iowa when the soil is 

warm enough for the seeds to grow but not too early to avoid frost damage. The timing 

varies depending on the location, with southern counties planting as early as April and 

northern counties waiting several weeks later. Farmers in Iowa typically begin harvesting 

corn in mid-September, with the majority of the harvest taking place in October. However, 

in cooler years, the harvest may not take place until November (https://www.io-

wacorn.org/education/faqs). 

 

Figure 1. Study Area. 

2.2. Dataset 

A variety of dataset was used to forecast corn yield from 2018 to 2021, including Sen-

tinel-1 SAR (COPERNICUS/S1_GRD), Sentinel-2 SR (S2_SR_HARMONIZED), Soil-Grids 

(https://www.isric.org/explore/soilgrids), USDA Yield (https://quickstats.nass.usda.gov/), 

Crop Land Data Layer (CDL), and County Boundaries data [22,23]. The Sentinel 1 and 2 

was downloaded from the Google Earth Engine (GEE) cloud computing platform [24]. 

Table 1 displays the statistical characteristics of yield observations for both the training 

and test datasets. 

Table 1. Sample plot yield statistics for year in study area. 

Type Year 
Number of 

Samples 

Min 

(Ton Ha−1) 

Max 

(Ton Ha−1) 

Mean 

(Ton Ha−1) 

Std 

(Ton Ha−1) 

train 2018 93 9.38 14.18 12.13 1.25 

train 2019 88 9.50 14.73 12.19 1.06 

train 2020 95 5.54 12.99 10.92 1.17 

test 2021 84 9.57 14.49 12.57 1.05 
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2.3. Methodology 

The aim of the proposed method is to improve corn yields prediction accuracy at the 

county level in IOWA State in-during growing season prior to harvest on the month of 

August. As displayed in Figure 2, our proposed method includes two main steps: 1—

extracting features derived from Sentinel-1, Sentinel-2, and Soil-Grids in the GEE system, 

and 2—using the proposed Concatenate-Based 2D-CNN-BiLSTM model to predict corn 

yield. The details of each steps briefly have been explained in the following subsections. 

 

Figure 2. Flowchart of the proposed method. 

2.3.1. Feature Selection 

As discussed before, various features derived from Sentinel1\2 and Soil-Grids were 

used to predict corn yield in our study area. Informative spectral bands of Sentinel-2 im-

ages (i.e., Blue, Green, Red, Red Edge 1/2/3, NIR, n-NIR, and SWIR 1/2 bands), along with 

its Vis (i.e., NDVI, LSWI, DVI, RVI, WDRVI, SAVI, VARI-GREEN, and GNDVI) were used 

as input optical features [25–32]. Additionally, VV, VH, difference of VV, and VH, and 

Radar Vegetation Index (RVI) [33] were extracted from Sentinel-1 SAR images [34]. Soil 

data including silt, clay, sand, cec, and pH was also collected at various depths ranging 

from 0 cm to 200 cm to construct our feature set (https://www.isric.org/explore/soilgrids). 

2.3.2. Corn Yields Prediction Using the Concatenate-Based 2D-CNN-BiLSTM Model 

As prediction of corn yield is so challenging, improvement of the advance and novel 

deep learning model for accurately predicting corn yield is important. In this way we pro-

posed the Concatenate-Based 2D-CNN-BiLSTM model which have two main parts (see 

Figure 3) including feature extraction using a 2D-CNN network, and corn yield prediction 

using a Bi-LSTM network. The 2D-CNN network extracts high-level spatial features from 

input data and concatenates them with low-level features from subsequent months [35]. 
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Additionally, a separate 2D-CNN network was created to incorporate single-time soil data 

features. Finally, the high-level features from soil, Sentinel-1, and Sentinel-2 data were 

concatenated and fed into a Bi-LSTM layer to accurately predict corn yield. The Bi-LSTM 

layer is able to overcome significant time lags between inputs across any time period, and 

enhance its ability to represent temporal patterns at different frequencies using backward 

and forward information [21]. This makes it particularly advantageous for analyzing crop 

growth cycles of varying durations. Monthly-Block consists of Conv2D-1 > Linear activa-

tion function > Concatenate layer > Conv2D > Linear activation function. Monthly-com-

posites (XMonthly) pass through the Monthly-Block, and monthly-features (FMonthly) are ex-

tracted. In addition, Soil-Block consists of Conv2D-3 > Linear activation function. Soil fea-

tures pass through the Soil-Block, and soil-features (S) are then extracted. FMonthly and S are 

then concatenated together, and fed into Bi-LSTM layer with ReLU activation function to 

predict corn yield. Finally, the output of the Bi-LSTM layer passes through a dense layer 

with linear activation function to obtain yield values. 

Overall, our Concatenate-Based 2D-CNN-BiLSTM model is a promising approach 

for accurately predicting corn yield by incorporating various data sources and effectively 

capturing temporal patterns. 

 

Figure 3. Flowchart of the proposed Concatenate-Based 2D-CNN-BILSTM model for corn yield pre-

diction. 

3. Results and Discussion 

For this study, a total of 250, 27, and 83 samples were selected for training, validation, 

and testing the Concatenate-Based 2D-CNN-BiLSTM model, respectively. The Conv2D-1, 

and Conv2D-2 layers were set to have 16, and 22 filters, respectively, with a kernel size of 

1 × 1. The Bi-LSTM layer had 16 filters. The model was trained using the Adam optimizer 

for 30 epochs with a batch size of 10. The best weight was obtained based on the minimum 

Validation-Loss. The performance of the proposed model was compared with Concate-

nate-Based 2D-CNN, 2D-CNN, and RF in two scenarios: (1) using Sentinel-1 and -2 data, 

and (2) using both Sentinel-1 and -2 data along with Soil-Grids. Table 2 displays the per-

formance of the proposed models and the compared models, measured in terms of RMSE, 

MAPE, MAE, RRMSE, and Index of Agreement (D). 

Table 2. Comparison of Performance of Proposed Concatenate-Based 2D-CNN-BILSTM Model ver-

sus Other Considered Methods for Corn Yield Prediction. 

Model 
Sentinel 1&2 Sentinel 1&2 and Soil-Grids 

RMSE RRMSE MAE MAPE D RMSE RRMSE MAE MAPE D 

Proposed Model 0.714 5.68 0.561 4.55 82.08 0.687 5.46 0.566 4.47 84.67 

Concatenate-Based 2D-CNN 0.849 6.75 0.686 5.60 67.58 0.799 6.35 0.620 5.02 72.71 

2D-CNN 0.848 6.74 0.694 5.64 64.80 0.834 6.63 0.677 5.51 69.90 

RF 1.089 8.66 0.935 7.95 69.04 1.073 8.54 0.918 7.78 69.60 
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Table 2 reveals that the Concatenate-Based 2D-CNN-BiLSTM model outperforms the 

Concatenate-Based 2D-CNN, 2D-CNN, and RF methods significantly. The best perfor-

mance of the Concatenate-Based 2D-CNN-BiLSTM model is achieved when combining 

Sentinel-1&2 and Soil-Grids, with an RMSE of 0.698 (t/ha), MAPE of 4.47%, MAE of 0.566 

(t/ha), RRMSE of 5.46%, and D of 84.67%. Our proposed model improves D by 14.77% 

compared to the 2D-CNN. 

Figure 4 depicts the scatter plots of predicted yield versus observed yield between 

our proposed method and compared methods in 2021. The scatter plots demonstrate that 

the fit line is close to the diagonal line in the Concatenate-Based 2D-CNN model and far 

in the RF model. 

 

Figure 4. The scatter plots of predicted yield versus observed yield between our proposed method 

and compared methods in 2021. 

Additionally, Figure 5 illustrates that the proposed model outperforms the compared 

models, resulting in a reduction in Error maps and generate the brighter error map. This 

confirms the efficacy of utilizing soil-Grids data for yield estimation. 

 

Figure 5. Error maps generated by the proposed and compared models in 2021. 

A visual representation of the distribution of corn yield value was presented in Fig-

ure 6, which compared the USDA yield with the predicted yield obtained from our pro-

posed method. The results displayed in Figure 6 indicate a significant level of agreement 
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between the observed and predicted corn yield, thereby reinforcing the reliability and ac-

curacy of our proposed method’s predictions. 

 

Figure 6. Map of USDA corn yield, and predicted corn yield in 2021. 

4. Conclusions 

Forecasting corn yield is a crucial aspect of agriculture management in IOWA. Recent 

studies have demonstrated that remote sensing, soil data, and Deep Learning methods are 

effective in estimating corn yield. In order to accurately predict corn yield, it is important 

to consider both temporal and spatial features. To achieve this, we propose a novel Con-

catenate-Based 2D-CNN-BiLSTM model that extracts both spatial and temporal features. 

The CNNs extract spatial features, while Bi-LSTM extracts temporal features. The inputs 

for our model include remote sensing data (Sentinel-1&2) and Soil-Grids data. We con-

ducted experiments with the proposed model on IOWA Corn from 2018 to 2021 at the 

county-level. Our results demonstrate the effectiveness and advantages of our approach 

over other methods. By considering both spatial and temporal features, our model is able 

to accurately forecast corn yield, which can aid in making informed decisions for agricul-

ture management in IOWA. 
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