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Abstract: This research evaluates the capability of Sentinel-2 satellite imagery for mapping Cymo-

docea nodosa meadows in El Médano (Tenerife, Canary Islands, Spain). A Level-1C image from 27 

October 2022 was used. Atmospheric correction was addressed using the Sen2Cor tool, while Lyz-

enga’s method was employed to account for the water column effect. Three supervised classifica-

tions were performed using Random Forest, K-Nearest Neighbors (KNN) and KDTree-KNN algo-

rithms. These classifications were complemented by an unsupervised classification and in situ data. 

Additionally, the amount of blue carbon sequestered by the C. nodosa in the study area was also 

estimated. Among the classifiers, the Random Forest algorithm produced the highest F1 scores, 

ranging from 0.96 to 0.99. The results revealed an average area of 237 ± 5 ha occupied by C. nodosa 

in the study region, translating to an average sequestration of 111,000 ± 2000 Mg CO2. Notably, the 

seagrass meadows in this study area have the potential to offset the CO2 emissions produced by the 

industrial combustion plant sector throughout the Canary Islands. This research represents a signif-

icant step forward in the protection and understanding of these invaluable ecosystems. It effectively 

underlines the potential of Sentinel-2 satellite data to map seagrass meadows and highlights their 

crucial role in achieving net zero carbon emissions on our planet. 
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1. Introduction 

Seagrass ecosystems support rich marine biodiversity and are among the most pro-

ductive ecosystems in the world, providing a wide range of ecological services such as 

nutrient cycling, erosion control, sediment stabilization, and habitats for numerous spe-

cies [1]. Furthermore, they sequester and store substantial quantities of carbon, referred 

to as blue carbon. They are able to capture up to 35 times faster than tropical rainforests 

[2]. Nevertheless, various anthropogenic threats such as coastal development, water pol-

lution, destructive fishing practices, and climate change are causing an accelerated loss of 

these valuable ecosystems. In fact, 29% of the known areal extent has disappeared since 

seagrass areas were initially recorded in 1879 [3]. 

Monitoring these ecosystems is, therefore, of paramount importance in order to de-

fine protected areas and carry out management and conservation tasks. While traditional 

in situ monitoring methods provide accurate results, they are frequently hindered by their 

expense, significant time consumption, and restricted coverage area. In response to those 

Citation: Veiras-Yanes, J.; Martín-

García, L.; Casas, E.; Arbelo, M. 

Mapping Seagrass Meadows and 

Assessing Blue Carbon Stocks Using 

Sentinel-2 Satellite Imagery: A Case 

Study in the Canary Islands, Spain. 

Environ. Sci. Proc. 2023, 27, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor(s): Name 

Published: date 

 

Copyright: ©  2023 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Environ. Sci. Proc. 2023, 27, x FOR PEER REVIEW 2 of 6 
 

 

limitations, there has been a growing interest in leveraging satellite imagery as a cost-

effective and large-scale alternative for monitoring these ecosystems [4,5]. 

Regarding the Canary Islands (Spain), an archipelago situated off the northwest coast 

of Africa, it is well known that the most common seagrass specie is the Cymodocea nodosa. 

Therefore, the main objective of this research is to evaluate the ability of Sentinel-2 

satellite data to map C. nodosa using machine learning algorithms and assess blue carbon 

stocks within the study area. 

2. Materials and Methods 

2.1. Study Area 

This study focuses on El Médano, located in the municipality of Granadilla de Abona, 

on the island of Tenerife (Figure 1). Notably, El Médano is home to vast meadows of C. 

nodosa, making it a distinctive study site for mapping seagrass. 

 

Figure 1. The Canary Islands archipelago, highlighting the study area (red rectangle) which encom-

passes La Tejita and El Médano beaches on Tenerife. 

2.2. Field Data 

Field data from 2016, provided by the Vice-Ministry of the Environment of the Ca-

nary Islands Government [6], stands as the only reference for mapping the C. nodosa mead-

ows at El Médano. It is essential to acknowledge the potential significant changes that 

might have taken place since that time. Consequently, a mixed approach was followed to 

determine the training polygons for the classifiers, as detailed further. 
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2.3. Methodology 

A level 1C (L1C) Sentinel-2 image, captured on 27 October 2022, containing top of the 

atmosphere (TOA) reflectance data was used. The main challenge faced was the attenua-

tion of the reflected optical signal caused by both the atmosphere and the water column. 

2.3.1. Image Pre-Processing 

For this study, Sentinel-2′s 10-m resolution bands B2, B3, B4, and B8 were employed. 

Sen2Cor [7] was used to perform the atmospheric correction. The required aerosol 

optical thickness, water vapor column, and the ozone layer were sourced from the Senti-

nel-2 auxiliary files AUX_CAMSFO and AUX_ECMWF, both of which contain data from 

the European Centre for Medium-Range Weather Forecasts. 

For masking out land pixels, a threshold value of 0.1 was imposed in the NIR band 

(B8) to perform a two-class classification. Afterwards, Sen2Coral [8] was used to perform 

the sunglint correction in order to avoid pixel misclassification caused by the specular 

reflection of the light off the ocean’s surface. Sen2Coral uses the Hedley’s algorithm 

shown in Equation (1) [9], 

𝑅𝑖
′ = 𝑅𝑖 − 𝑏𝑖 ∙ (𝑅𝑁𝐼𝑅 − 𝑀𝑖𝑛𝑁𝐼𝑅) (1) 

where 𝑅𝑖
′ is the corrected reflectance of the pixel in band 𝑖, 𝑅𝑖 is the reflectance of the 

pixel in presence of sun glint in band 𝑖, 𝑏𝑖 is the regression slope, 𝑅𝑁𝐼𝑅 is the reflectance 

in the NIR band of the pixel in presence of sun glint, and 𝑀𝑖𝑛𝑁𝐼𝑅 is the minimum reflec-

tance in the NIR band from all the pixels of the image. 

To limit classification to areas of seagrass growth and comply with the 20–30 m depth 

constraint of the water column correction method, optically deep waters were masked out 

with bathymetry data provided by [6]. 

Finally, to perform the water column correction, Lyzenga’s method [10] was em-

ployed. It consists of generating new synthetic bands, known as Depth Invariant Indexes, 

using attenuation coefficients (Equations (2)–(4)). 

𝐷𝐼𝐼𝑖𝑗 = 𝑙𝑛(𝐿𝑖) − [(
𝑘𝑖

𝑘𝑗

) 𝑙𝑛(𝐿𝑗)] (2) 

 
𝑘𝑖

𝑘𝑗

= 𝑎 + √(𝑎2 + 1) (3) 

𝑎 =
𝜎𝑖𝑖 − 𝜎𝑗𝑗

2𝜎𝑖𝑗

 (4) 

𝐷𝐼𝐼𝑖𝑗  is the Depth Invariant Index of the 𝑖 and 𝑗 bands, 𝐿𝑖  and 𝐿𝑗  are the reflec-

tances of the bands 𝑖 and 𝑗 respectively, 𝑘𝑖  and 𝑘𝑗  are the corresponding attenuation 

coefficients for each band, 𝜎𝑖𝑖 is the variance of the band 𝑖, 𝜎𝑗𝑗is the variance of the band 

𝑗 and 𝜎𝑖𝑗  is the covariance of the bands 𝑖 and 𝑗. 

2.3.2. Classification and Blue Carbon Assessment 

Due to uncertainties about changes in the seagrass patch relative to the 2016 in situ 

mapping, it was not possible to define training polygons using this data. Therefore, an 

initial unsupervised classification was performed using the K-Means algorithm and all 

the Depth Invariant Indexes. This approach provides a clearer understanding of potential 

changes in seagrass coverage. Training polygons were then defined in those pixels where 

the 2016 field data mapping intersected with the unsupervised classification. 

The Random Forest (RF), K-Nearest Neighbors (KNN); and KDTree-KNN algorithms 

were used for supervised classifications. Furthermore, cross-validation method was ap-

plied to optimize algorithms’ hyperparameters. The assessment of these classifications 

was done using the F1 score. This metric ensures a balanced evaluation, specially when 
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there are varying quantities of training polygons for each class, providing a comprehen-

sive understanding of the model’s accuracy. 

The InVEST Coastal Blue Carbon model was used to quantify the Mg of CO2 seques-

tered in the study area by the C. nodosa. Two primary look-up tables (LUT’s) needed to be 

built considering biophysical factors of the C. nodosa. Research papers employing this 

method in the Canary Islands [11,12] were analyzed for the completion of these LUT’s. 

Within the scope of this study, each seagrass pixel is presumed to sequester the same 

amount of carbon. The total sequestered CO2 can then be calculated for the whole study 

area by multiplying the total number of seagrass pixels identified in the mapping process, 

equivalent to seagrass hectares, by the sequestration rate per hectare 

3. Results and Discussion 

The outcome for the unsupervised classification conducted by the K-Means algo-

rithm with a cluster count of 𝑘 = 4 is illustrated in Figure 2a. Results reveal an area of 

221 ha occupied by the C. nodosa. Figure 2b,c, show the highest and least extent of seagrass, 

respectively, after applying different supervised classification algorithms. The largest 

seagrass extent (245 ha) was achieved using the KNN algorithm with 5 neighbors, while 

the least seagrass extent (230 ha) was obtained using the RF algorithm with 11 trees. 

 

Figure 2. Classification results for unsupervised and supervised methods. In situ seagrass data is 

outlined in blue. Classified seagrass areas are shown in green. All other coverings are labeled as 

“sand” and colored in yellow: (a) Unsupervised classification, (b) KNN supervised classification, (c) 

RF supervised classification. 

Upon completion of the classification process, the RF algorithms demonstrated the 

top F1-scores, falling within a range of 0.96 to 0.99. In contrast, both KNN and KDTree-

KNN showed lower F1-scores, with values ranging between 0.84 and 0.96. 
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In a previous study [4] using WorldView-2 imagery and Lyzenga’s water column 

correction method, the authors obtained an accuracy of 71.84% when mapping C. nodosa 

in this study area. The results were noisier, resulting in worse metrics. This may be due to 

the difference in spatial resolution between the WorldView-2 (1.8 m) and Sentinel-2 (10 

m). Higher spatial resolution can detect more nuanced turbidity variations, while Senti-

nel-2 inherently averages turbidity (reflectance values) due to its larger pixel size, result-

ing in a smoother image. Consequently, when applying Lyzenga’s water column correc-

tion method to Sentinel-2 image, the turbidity variations are not as pronounced as those 

observed in the WorldView-2 image, and therefore, the performance increases. In contrast, 

our results are in agreement with those of other research which compares the performance 

of WV-3 and Sentinel-2 in mapping benthic habitats using Lyzenga’s method [5]. They 

found that WV-3 pixels appeared to be noisier than Sentinel-2 ones. 

From the hectares of seagrass determined by each of the algorithms, an average of 

237 ± 5 ha was calculated. Using this average value, the blue carbon sequestered in the 

study area was estimated to be 111,000 ± 2000 Mg of CO2. When comparing these figures 

with the annual CO2 emissions from various sectors in the Canary Islands, it was found 

that the seagrass in the study area could offset the CO2 emissions from the entire industrial 

combustion plant sector of the Canary Islands, which totaled 76,430 Mg of CO2 in 2019 

and 61,690 Mg of CO2 in 2020 [13]. 

4. Conclusions 

This study has successfully demonstrated the capability of Sentinel-2 satellite im-

agery to map and monitor seagrass meadows in the Canary Islands. The pre-processing 

workflow implemented presents a promising approach for handling Sentinel-2 image 

data in similar studies across different locations. Furthermore, this study, has clearly 

demonstrated the instrumental role seagrass ecosystems can play in regional strategies to 

achieve net zero carbon emissions. 
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