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Abstract: This study presents a novel approach to address challenges regarding data acquisition for 

object detection and tracking purposes by enhancing UAV path planning specifically designed for 

fruit detection in woody crops trained in vertical trellis, considering the biophysical environment of 

the field. The proposed method implements the Ant Colony Optimization (ACO) algorithm and 

enables single and multiple UAVs to fly synchronously while ensuring a safety distance between 

platforms. The results highlight that ACO is able to generate optimal and safe routes, considering 

the vegetation, and covering the whole agricultural area. Moreover, it shows potential to solve par-

tial leaf-occlusion for fruit identification.  
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1. Introduction 

There is a current trend in Precision Agriculture which is focused on woody crops, 

such as vineyards [1] and fruit orchards [2], with a strong emphasis on using deep learn-

ing for fruit detection [3–5]. However, these studies primarily study object detection, com-

puter vision methods, and their metrics, without considering the method used for data 

acquisition and the most efficient path to collect it.  

Path planning involves finding a suitable route from a starting point to a goal point 

while considering obstacles to avoid collisions [6]. In the context of aerial path planning 

for unmanned aerial vehicles (UAVs), optimization is critical due to limited autonomy 

and energy consumption constraints [7–9]. Unlike ground robots used in agricultural 

fields, UAVs can fly above obstacles and do not need to consider the topography [10,11] 

since they are not affected by those constrains. Furthermore, aerial path planning can be 

executed using one or multiple UAVs working cooperatively. In Precision Agriculture, 

where large fields need to be covered efficiently, employing multiple UAVs can reduce 

mission time and increase area coverage. However, it is relevant to take into account dur-

ing the whole mission the safety distance between platforms, which is influenced by flight 

speed and UAV size [12].  

All in all, it is relevant to change the focus of attention from deep learning algorithms 

and their metrics to a step prior to that: the proper and efficient acquisition of the datasets 

to be employed. The importance of carefully planning missions and paths in real-world 

environments is emphasized, as many fruit detection algorithms are trained under artifi-

cial conditions, such as plants with leaf-removal [13,14], making them less robust in chal-

lenging and realistic settings. This study presents a novel approach for path planning that 
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has potential to improve fruit detection and assessment in vineyards trained in vertical 

trellis.  

2. Materials and Methods 

In order to customize a multiple UAV Path Planning, the first step is to identify the 

biophysical environment of the field through a nadir UAV flight, from which the ortho-

mosaic will be computed to extract the Canopy Height Model (CHM). Once the specific 

characteristics of the field have been identified, the actual Path Planning can be designed, 

which will be executed during a second UAV mission.  

2.1. Data Acquisition 

The vineyard (Vitis vinifera cv. Loureiro) utilized for this study is located in 'Tomiño, 

Pontevedra', Galicia, Spain (X: 517186.7, Y: 4645072.3; ETRS89 / UTM zone 29 N) and is 

owned by 'Bodegas Terras Gauda, S.A'. The distance between plants and rows was 2.5 × 

3 m, respectively. The first flight, also called survey flight, was carried out in 2021 at 30 

meters above sea level. The platform used was a DJI Matrice 210 (DJI Sciences and Tech-

nologies Ltd., Shenzhen, Guangdong, China), equipped with a Micasense RedEdge 3 mul-

tispectral camera (AgEagle Sensor Systems Inc., Wichita, Kansas, USA).  

2.2. Survey Flight 

The survey flight’s purpose is to identify regions of interest, above which the UAV 

will acquire data, and obstacles or regions without interest, above which the UAV will not 

fly and neither collect data. For that, the CHM is derived from the orthomosaic, and only 

areas between 0.5 and 2 meters were selected since those include the minimum and max-

imum heights of the vine plants. The rows which had missing plants or high trees sur-

rounding were selected as Forbidden whereas the other areas were marked as Regions of 

Interest (ROI).  

The next step is to design the optimal path considering the ROIs and the Forbidden 

areas. Ant Colony Optimization (ACO) algorithm [15] was selected for this study as the 

algorithm to identify the most optimal route that connects the ROIs without flying over 

the Forbidden areas since it has already been successfully applied to other agricultural field 

operations [16,17]. A requirement of the algorithm is to select the starting position and the 

number of platforms that will carry out the missing simultaneously, to keep a safety dis-

tance between UAVs during the whole trajectory.  

3. Results 

In order to collect data from a row, the UAV flew on top of the adjacent row and 

captured images from the left and the right side of the canopy of each vine plant. Figure 

1 includes six rows of the vineyard above which the UAV would fly. However, since the 

canopy needs to be recorded from both sides, only the inner four rows are the ones which 

will have images taken from the two laterals. Figure 1a shows the CHM of the vineyard, 

being marked in red the Forbidden areas. Those areas will not have data collection, and 

hence, the UAV will not fly above both top and bottom adjacent rows. For the areas with 

agronomic interest, the UAV will fly to the specific waypoint marked in Figure 1b, will 

capture an image of that side of the canopy, and will rotate 180º to collect images of the 

other side of the canopy. The path designed to capture data flying three UAVs simultane-

ously can be observed in Figure 1b, where each UAV path is marked with a different col-

our.  

The length of the route designed implementing ACO was 36.89 m, and compared to 

the length proposed with a path planning without optimization, the length obtained was 

38.48, which represents a decrease in path length of 4.32%.  
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Figure 1. Path planning design of the area of interest. (a) Canopy Height Model of the vineyard (in 

grey) along with the areas with obstacles or without agronomic interest, marked with red squares. 

Coordinates in UTM zone 29N (EPSG: 25829). (b) Path designed using Ant Colony Optimization to 

capture data from both sides of the canopy of the four inner rows. The green and red dots indicates 

the starting and landing points of each UAV. 

4. Discussion and Conclusions 

The methodology studied in this project provides a solution to optimal data acquisi-

tion by considering the biophysical environment of the field in order to design an opti-

mized path planning to boost Object Detection and Tracking in vineyards. It requires two 

flights: (1) a survey mission to get insights on the specific characteristics of the field, and 

(2) the actual path designed using ACO to enhance Object Detection and Tracking pur-

poses.  

The proposed method, implementing Ant Colony Optimization, was able to improve 

fruit detection by selectively avoiding data collection from unnecessary areas, reducing 

the path length up to 4.32% compared to traditional path planners without optimization 

algorithms. The optimization of the flight allows to minimize the flight time and the usage 

of the batteries [18,19], which is one of the limiting factors of UAV missions [7,8], while 

improving the collection of crucial data from the vineyard, such as fruit images. That op-

timization might lead to higher fruit detection and tracking accuracies, which is a current 

issue that research carried out in commercial vineyards is facing when no leaf-removal is 

executed [20].  

Another strength of the method is that it only requires an RGB sensor to carry out 

both survey and second flights. This is an advantage since these sensors are more afford-

able and might be more attractive to the final stakeholder of the study: technicians and 

farmers. Nevertheless, this methodology has not yet been tested on the field. To enable 

further research on the topic, the code written in MATLAB has been made available to the 

scientific community [21].  

Future work should focus on executing those flights in several vineyards and with 

multiple levels of difficulty regarding the number of Forbidden areas present in the field, 

to validate the robustness of the proposed method.  
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