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Abstract: Band selection is a frequently used dimension reduction technique for hyperspectral im-

ages (HSI) to address the “curse of dimensionality” phenomenon in machine learning (ML). This 

technique identifies and selects a subset of the most important bands from the original ones to re-

move redundancy and noisy information while maintaining optimal generalization ability. Band 

selection methods can be categorized into supervised and unsupervised techniques depending on 

whether labels are used pr not. Unsupervised band selection and feature extraction framework is 

proposed in this study. The framework trains a sub-neural network to identify the most important 

and informative bands from the original data space, which is then projected to a reduced and more 

informative space. The classification performance of the selected bands combination on the Pavia 

University HSI datasets has been verified using multiple machine learning algorithms. The pro-

posed method not only enhances the classification results of HSI, but also reduces the computational 

time and data storage requirements compared to other state-of-the-art band selection approaches. 

Keywords: Hyperspectral Images; Unsupervised Band Selection; Machine Learning; Deep Learn-
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1. Introduction 

High-dimensional datasets are common in various fields, such as image processing, 

genomics, finance, and more. These datasets have a wide range of features (attributes) and 

often surpassing the number of samples available for analysis. This wealth of information 

is valuable, but it also presents numerous challenges, collectively known as the “curse of 

dimensionality”. The later involves issues such as increased computational complexity, 

overfitting, degraded model performance and reduced interpretability. These challenges 

hinder the effectiveness of traditional data analysis methods [1].  

Feature selection is a technique that identifies a subset of relevant features from a 

high-dimensional dataset. There are three main types of feature selection methods: filter 

methods, wrapper methods, and embedded methods. Filter methods assess feature im-

portance independently of any specific learning algorithm, while wrapper methods use a 

specific learning algorithm to evaluate the impact of feature subsets on model perfor-

mance [2]. Embedded methods combine feature selection seamlessly with the learning 

process itself. The choice of feature selection method depends on the specific application 

and the available resources. These methods cover a wide range of feature selection tech-

niques, including Principal Feature Analysis (PFA) [3], which prioritizes key features 

through statistical measures; Multi-Cluster Feature Selection (MCFS) [4], which leverages 

clustering techniques; Unsupervised Discriminative Feature Selection (UDFS), which 

seeks to maximize feature discrimination; and Principal Component Analysis (PCA), 

which focuses on orthogonal transformations. However, a significant challenge arises 

when the selected features exhibit high correlations. This can potentially lead to the 
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representation of only partial information and limit the global representativeness of the 

feature subset. 

Multispectral imagery (MSI) captures a limited range of electromagnetic radiation in 

a few wide spectral bands. For some real-world applications, MSI can provide adequate 

information for the task. However, compared to other advanced satellite imagery, it offers 

less detailed data. In contrast, hyperspectral imagery (HSI) captures a broad range of elec-

tromagnetic radiation in hundreds of narrow bands, providing rich information about 

scene materials. This makes HSI ideal for applications like material identification, target 

detection, and environmental monitoring. However, HSI can be expensive and difficult to 

process. In HSI, feature or band selection and data compression are key techniques for 

managing large data volumes, improving analysis efficiency, and simplifying storage and 

transmission. This enables more effective HSI applications in areas like agriculture, min-

eral exploration, and environmental monitoring [5]. 

Deep learning-based feature selection methods, such as autoencoders (AE), use neu-

ral networks to automatically identify and extract the most important features from com-

plex datasets. AE are a type of neural network that can learn compact representations of 

input data. This makes them well-suited for both feature selection and data compression 

tasks. By learning compact representations of input data, AE can enhance data analysis 

efficiency and preserve vital information across diverse domains [6]. 

A new framework of feature selection for HSI based on Fractal AE (FAE) [7] is intro-

duced in this paper. FAE seeks to achieve optimal feature subsets that effectively balance 

the representation of information and diversity, which can enhance the performance of 

subsequent data analysis tasks. In the following sections, the details of FAE are delved 

into, its unique characteristics are showcased, and its effectiveness is demonstrated 

through experiments and comparisons with state-of-the-art methods. 

This work is organized as follows: In Section I, a detailed presentation of the archi-

tecture and formulation of AE and FAE is provided. Following that, in Section II, our 

methodology for utilizing these techniques is elucidated, and our comparative analysis 

against several other methods is discussed. 

2. Methodology 

This section introduces an approach tailored for HSI analysis based on the concept of 

FAE. While building on the foundation of AE, the approach customizes the architecture 

to address the specific challenges of HSI data. Figure 1 shows the architecture of FAE, 

which forms the core component of this method. The design of the architecture aims to 

enable effective feature selection for HSI. In the following sections, an in-depth explana-

tion of the architecture and its constituent parts is provided. 

2.1. Formalization of AE: 

For HSI, we formalize the AE as follows: 

 

𝐦𝐢𝐧 ||𝐗 − 𝐟(𝐠(𝐗))||𝐅
𝟐 (1) 

Here, the encoder is represented by 𝑔, and the decoder is represented by 𝑓. The func-

tion 𝑔(𝑋) transforms the input HSI data 𝑋 into a latent space 𝑹𝒏×𝒅, where 𝑑 signifies 

the dimension of the bottleneck layer within the AE. To illustrate, the application of our 

approach to a HSI dataset is considered. In the context of HSI analysis, this formalization 

allows the essential spectral information to be effectively captured and represented within 

a reduced-dimensional latent space. 

2.2. Formalization of Feature Selection: 

Feature selection entails the process of pinpointing a subset of informative features 

within the original feature space, and it can be defined as follows: 
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𝐦𝐢𝐧𝐒𝐤,𝐇   ⃦𝐇(𝐗𝐒𝐤) − 𝐗  ⃦ 𝐅
𝟐 (2) 

Here, 𝐒𝐤  represents the chosen subset of 𝑘  features, 𝐗𝐒𝐤  denotes the dataset de-

rived from X by retaining only the features in 𝐒𝐤, and 𝐻 signifies a mapping from the 

space defined by 𝐗𝐒𝐤 to a new space, all performed without relying on any label or class 

information. 

2.3. Formalization of FAE: 

FAE, a novel approach designed to tackle feature selection, introduces a concept akin 

to self-similarity in its operation. The primary objective of FAE is to select a subset of 𝑘 

informative features from a HSI X, such that the chosen features collectively retain as much 

information about the overall spectral content of the original samples as possible. 

 

Figure 1. The architecture of FAE. The presented quantifies are: (1) feature selection result, (2) input, 

(3) reconstruction based on the selected features, (4) reconstruction from the one-to-one layer. 

The operation of FAE is formalized as an optimization problem with two key com-

ponents; the global reconstruction term minimizes the reconstruction error between the 

original HSI data X and the data reconstructed after passing through the encoder 𝑔 and 

decoder 𝑓 networks, considering the selected features represented by 𝑾𝐈. The diversity 

term is introduced to encourage the selected subset of features (𝑾𝐈) to be diverse and not 

highly correlated with each other. This term ensures that the chosen features effectively 

capture various aspects of the HSI. 

 

𝒎𝒊𝒏𝒘,𝒈,𝒇||𝐗 − 𝐟(𝐠(𝐖𝐈) ||𝑭 
𝟐 + 𝛌𝟏||𝐗 − 𝐟(𝐠(𝐖𝐈

𝐦𝐚𝐱 𝐤) ||𝑭 
𝟐 + 𝛌𝟐||𝐖𝐈 ||𝟏, 𝐬. 𝐭. 𝐖𝟏 ≥ 𝟎 (3) 

In the notation used here, a bold capital letter, for instance 𝑊, represents a matrix, 

whereas a lowercase bold capital letter, like 𝑤, signifies a vector. The notation 𝐷𝑖𝑎𝑔(𝑤) 

represents the creation of a diagonal matrix with its diagonal elements derived from the 

vector 𝑤. The operation 𝑊𝑚𝑎𝑥 𝑘 is defined to retain the 𝑘 largest entries of the vector 𝑤 

while setting the remaining entries to zero. Furthermore, ||. ||𝑭  denotes the Frobenius 

norm. The overall objective function is balanced between these two terms, as shown in 
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Equation (3), and is controlled by non-negative balancing parameters, λ1  , λ2  and 

WI
max k  = Diag (wmax k) . This approach is named FAE because of its intriguing character-

istic: a small proportion of features selected in the second term can achieve performance 

similar to using the entire set of features in the first term when reconstructing the original 

HSI. This self-similarity trait becomes even more evident when FAE is applied to extract 

multiple feature subsets for different tasks. Firstly, FAE is utilized to perform feature se-

lection on the HSI. FAE is tailored to select a subset of informative spectral bands from the 

original dataset while ensuring that the chosen features are diverse. This process aims to 

enhance the representativeness of the feature subset. 

However, the innovation in FAE comes from its ‘bottleneck’ layer, which is part of 

the encoder. This bottleneck layer enables dimensionality reduction by compressing the 

HSI into a lower-dimensional latent space. This compression captures the most important 

information from the original data, emphasizing feature extraction. In this way, FAE skill-

fully balances between selecting informative yet diverse features. This complexity is rep-

resented by the “diversity term,” which encourages the chosen features to be distinct and 

uncorrelated. This ensures the feature subset effectively covers a wide range of hyperspec-

tral characteristics. In essence, FAE’s bottleneck layer plays a critical role in extracting the 

essential spectral information while promoting feature diversity, making it a powerful 

tool for HSI feature selection. 

In this neural network architecture, feature selection is an important part of the 

model’s post-training process. Initially, all features are given equal weights, implying 

equal importance. As the model trains, these feature weights are updated. When the se-

lection parameter is set to ‘True’, a feature selection mechanism is activated. This mecha-

nism analyzes the feature weights to evaluate their significance. It determines a threshold 

based on the largest weight value, and any feature whose weight falls below this threshold 

is removed by setting it to zero. This process yields a reduced feature subset containing 

only the top 𝑘 features ordered by their learned importance. Applying this post-training 

selection simplifies the model, lowers dimensionality, and improves generalization by fo-

cusing on the most relevant features identified by the neural network during training. 

Once feature selection with FAE is completed, different supervised classification 

tasks are performed. Ensemble learning algorithms, such as Random Forest, LightGBM, 

XGBoost, and CatBoost, are also used for supervised classification. These classifiers are 

known for their robustness and ability to handle complex feature spaces. The selected FAE 

features are used as inputs for these classifiers, which improves classification accuracy 

and interpretability. This methodology enables a comprehensive evaluation of the effec-

tiveness of FAE-based feature selection in supervised classification scenarios, contributing 

to a deeper understanding of HSI analysis techniques. 

3. Experiments 

3.1. Dataset Description 

In this paper, the benchmarking dataset used is Pavia University. This data is com-

monly used in the HSI domain to assess and compare the performance of HSI processing 

and analysis algorithms. 

3.2. Result and Discussion 

In our study, the application of FAE for feature selection yielded notable improve-

ments in classification performance. When compared to alternative feature selection meth-

ods, FAE consistently demonstrated superior results across various evaluation metrics, 

including accuracy, F1-score, recall, precision, and reconstruction error, which is meas-

ured in mean squared error (MSE) for evaluating the model’s reconstruction error. 

The success of FAE in obtaining the most pertinent and varied set of features from 

HSI underlines the observed improvements in classification accuracy and other perfor-

mance metrics. This thorough feature selection procedure makes sure that the chosen 
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features retain important spectral content information while also assisting in the reduction 

of dimensionality. FAE has an advantage over other feature selection methods since it can 

balance the preservation of important spectral information with the promotion of feature 

diversity. Because of this quality, FAE is especially well suited for HSI, where it’s crucial 

to strike a careful balance between feature information and redundancy. 

Table 1. Performance Accuracy Metric. 

 
Accuracy 

UDFS    MCFS     AE       PCA    FAE 

RF  0.48       0.80      0.85       0.79     0.85 

LGBM  0.44       0.57      0.56       0.55     0.57 

XGBOOST  0.55       0.81      0.87       0.80     0.85 

CATBOOST  0.50       0.81      0.82       0.50     0.85 

Table 2. Performance F1-Score Metric. 

 
F1-Score  

UDFS     MCFS    AE       PCA    FAE  

RF  0.26       0.87      0.86       0.82     0.90 

LGBM  0.61       0.86      0.86       0.82     0.89 

XGBOOST  0.29       0.82      0.82       0.83     0.88 

CATBOOST  0.29       0.87      0.87       0.83     0.89 

Table 3. Performance Recall Metric. 

 
recall 

UDFS     MCFS    AE       PCA    FAE  

RF  0.24       0.88      0.86       0.80     0.91 

LGBM  0.00       0.84      0.80       0.77     0.89 

XGBOOST  0.30       0.85      0.86       0.83     0.88 

CATBOOST  0.29       0.86      0.86       0.83     0.88 

4. Conclusion and Future Work 

Mixed results were obtained via supervised classification using different feature se-

lection techniques. While some techniques outperformed others, the classification out-

comes employing the Fractal Autoencoder (FAE) method’s feature selection showed the 

most promise. This was done in an effort to reduce the amount of time and money needed 

to process hyperspectral images (HSI) while still getting accurate classification results. 

With this decision, the workflow was streamlined and memory and computational needs 

were decreased, improving the process overall and lowering costs. 
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