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Abstract: The use of unmanned aerial vehicles (UAVs) in precision agriculture has proven to be a 

useful tool for crop monitoring. The use of this technology in irrigation water management 

represents a significant improvement opportunity compared to the tools commonly used. This 

study aimed to estimate the water content in corn plants using images captured by a drone, 

evaluating the effect that the flying height has on the accuracy of the estimation of this indicator. 

For this purpose, the water potential (WP) was measured in corn plant leaves, which allows 

inferring the presence of water stress and indicating the need for irrigation in the plant. Aerial 

images of the crop were captured under three treatments based on irrigation levels (40%, 70%, and 

100% water applied compensating for evapotranspiration) to induce gradients of moisture content 

in the plants. Seven drone flights were carried out at different dates at 30, 50 and 70 m height. The 

water potential of the leaves was correlated with radiometrically calibrated multispectral images (R, 

G, B, red-edge, and near-infrared). Three models were developed: a multiple linear regression (LM), 

neural networks (NN), and a random forest (RF). The LM and NN models showed similar error 

metrics, with the RF model showing the best results, with an average root mean square error (RMSE) 

and coefficient of determination (R2) of 1.26 and 0.9, respectively with training dataset. The flying 

height, which affected the resolution of the images, was not significant in the estimation of WP in 

this height range.   
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1. Introduction 

The use of unmanned aerial vehicles (UAVs) in Precision Agriculture has proven to 

be a very useful tool for remote crop monitoring, allowing non-invasive and faster 

information acquisition in relation to conventional methods. The use of this technology in 

irrigation water management represents a significant improvement opportunity and can 

allow a diagnosis of the plant water status at a spatial level, allowing the detection of 

heterogeneity [1] and the quantification of water shortage. 

The determination of the water status (WP) of plants allows the farmer to establish 

the timing and amount of a watering. The plant water potential is an eco-physiological 

variable commonly used to estimate the water status of crops, however, the reliability of 

its values as a representation of the water status of plants requires some conditions to be 

met, one of the most important stablishes that the measurement of WP of the samples 

(leaves or portion of these) must be performed at the same time as their cutting to avoid 

water losses in their tissues, this is complicated when the crop area is extensive. This may 

imply the consumption of a large amount of time and labor. 
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The use of UAVs as an alternative that solves the disadvantages mentioned above 

requires the construction of one or more models that relate WP data previously measured 

in the field to be correlated with information extracted from the aerial images captured by 

the drone. Machine learning-based models have shown promise as they could consider 

several aspects that influence the determination of the water status of plants [2]. The flight 

height of the drone is not standardized, this height parameter affects the quality of the 

images captured, that is, the greater the height, the lower the level of detail of the plants 

captured. In the same way, at a lower flight height, the drone will require more flight time 

and battery consumption. 

Several studies have been conducted to monitor the water status of crops, using 

mainly multispectral, hyperspectral, and thermal cameras, and applied to a variety of 

crops [3–5]. These studies generally involve the acquisition of various vegetation indices 

to be correlated with some physiological indicator related to the water status of the plant 

[6]. To do this, the studies focus on the acquisition of these vegetation indices through the 

crop canopy [7]. 

The goal of this study is to evaluate the model that best estimates the WP in corn 

plants, as well as to establish whether or not there is an effect on the estimation of this 

parameter due to the flying height of the drone  

2. Materials and Methods 

2.1. Establishment of the experiment 

Three treatments were established based on the level of irrigation applied to 

compensate for the evapotranspiration rate, applying a level of 40% (T3), 70% (T2) and 

100% (T1) of the water required by the crop. In other words, the 100% treatment was 

provided with the total amount required while the 40% treatment would have a deficit of 

60% of applied water. Each treatment (Fig. 1) had an area of 400 m2 (20 m x 20 m) cultivated 

with corn of a commercial variety called DK-2069. The crop was established on May 15, 

2022, with the first flight taking place on June 13, 2022. The field is located in Ramos 

Arizpe, Coahuila, Mexico (25°39'08.1''N, 101°06'49.2''W). All macro and micronutrient 

requirements were supplied to the three treatments according to [8] through irrigation 

water in the spring-summer cycle. 

 

 

Figure 1. Configuration of the three established treatments (T1, T2, and T3), showing within each 

of them the location (circle) in which the water potential of the corn plants was measured. 

2.2. Measurement of Water Potential in Plants 

Using a Scholander pressure chamber (Plant water status console, Model 3005F01) at 

approximately 12:00 pm on the same day as the drone flight, the water potential (WP) was 

measured in mature leaves from the upper canopy of corn plants. The plants were selected 



Eng. Proc. 2023, 5, x FOR PEER REVIEW 3 of 4 
 

 

according to the established sampling points, as shown in Figure 1. To determine the WP, 

a cut was made 30 cm from the apex of the leaves to subsequently measure the appearance 

of the sap meniscus from the main vein with the leaf inside the pressure chamber. These 

measurements were made weekly from June to August 2022. 

The water potential reading is direct (in pressure units) and was considered to be 

correlated with the pixel intensities of each of the channels (R, G, B, RE, and NIR). 

2.3. Aerial image acquisition 

During each WP measurement day, three flights were performed with the drone over 

the experiment surface using a DJI P4 multispectral equipped with GPS, solar radiation 

sensor, and flight stabilization system. It also has a 12.4 megapixel multispectral camera 

with an image size of 4000 x 3000 pixels. 

Images were captured under clear sky conditions around noon with low wind 

speeds.   

2.4. Image processing 

The aerial images were processed using the R v4.2 language and included a 

radiometric calibration. The images were segmented to remove the soil, and the image 

processing was performed using the NDVI vegetation index to highlight the vegetation 

from the rest of the elements in the orthomosaic image. A threshold value was calculated 

using the Otsu method to perform this differentiation, thus performing the segmentation. 

The EBImage library [9] was used within the R environment to process the orthomosaic 

images. 

2.5. Modeling of WP based on multispectral images 

Three models were built from the data obtained using the R v4.2 language, 

considering WP as the dependent variable. The average pixel intensity of the area 

surrounding 1 m around each sampling point (Fig. 1) was calculated in each of the R, G, 

B, RE, and NIR channels of each segmented orthomosaic image. These values, along with 

the number of weeks after planting, were the input data for each model. The three 

regression models implemented were: a multiple linear regression model (LM), artificial 

neural networks (NN) and random forests (RF). The metrics for evaluating the obtained 

models were the Determination Coefficient (R2) and the Root Mean Square Error (RMSE). 

A grid search was used to select parameters for the construction of the NN and RF 

models. The best parameters found for NN were a hidden layer of seven units (size) and 

a weight decay (decay) of 0.1. For RF, a number of variables randomly sampled as 

candidates at each split (mtry) of 7 and a number of trees to grow (ntree) of 500 were 

selected. The datasets were divided into training and testing using 80% and 20% of the 

total data collected in the nine flights performed.  

3. Results  

The results of the metrics obtained from the constructed models are shown in Figure 

2. The RMSE and R2 metrics were better with the training dataset (lower RMSE and higher 

R2). By combining the coefficients of RMSE and R2 for the three flight heights (30, 50, and 

70 m), a Least Significant Difference (LSD) test was performed, which indicated a 

significant difference between the RF and LM models for both metrics. The NN model 

was established by this test in an intermediate group without significant difference 

compared to the RF and LM models (Table 1). 
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Figure 2. a) Determination coefficient (R2) values obtained for each drone flight height (30, 50, and 

70 m) with testing and training data sets. b) RMSE values obtained for each drone flight height (30, 

50, and 70 m) with testing and training data sets. 

The average values obtained for each model are shown in Table 1. In this table, it is 

possible to see that the RF model had the highest R2 value and the lowest RMSE value for 

both the training and testing data sets. The least accurate model was the LM model, 

confirmed by the LSD test. 

Table 1. Average values obtained for the RMSE and R2 metrics, by model type, uniting the three 

flying heights (30, 50 and 70 m). 

Model Training data Testing data 

RMSE R2 RMSE R2 

LM 2.8a 0.53a 2.92a 0.44a 

NN 1.94ab 0.76ab 2.61ab 0.57ab 

RF 1.26b 0.9b 2.0b 0.73b 
Different letters indicate statistically significant difference between groups according to the Least 

Significant Difference (LSD) test. 

4. Discussion 

The results showed a better generalization of the water potential in the plants with 

the RF model, since in all cases the RMSE and R2 values were always lower when the 

model was applied with testing data, which could indicate overfitting on the data, 

especially observed with the NN and RF models. The LM model had the lowest level of 

fit, indicating that the relationship between the dependent variable WP and the predictor 

variables of pixel intensity of the R, G, B, RE and NIR channels is possibly not linear. 

According to what is observed in Figure 2, the flight height does not seem to influence 

the fit level of any of the models, since there is no obvious trend between the metrics used 

when comparing their values within each of the three models. This lack of trend is 

appreciated both in results obtained with the training data set as well as with testing data. 

This indicates that a drone can fly from 30 to 70 m without affecting the estimation of WP 

in plants. With a higher flying height, a larger area can be covered in a shorter time, thus 

allowing for a lower consumption of the drone's battery. This contrasts with what was 

found by [10], who found an effect of flying height and time of day, although they were 

estimating a different parameter, such as canopy temperature, and using a different 

radiometric calibration method than the one used in the present study. 

A study by Anders et al. [11] found that flights at altitudes of 126 to 235 m did not 

significantly affect vegetation structure. In the present study, flights were conducted at 

lower altitudes (30 to 70 m) to capture finer details of individual leaves. The R2 values 
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obtained in the present study are consistent with the general trend found in other studies, 

which typically report R2 values of no more than 0.7 when correlating images with water 

potential [12]. The present study also addressed the temporal factor by conducting 

multiple measurements throughout the crop cycle. This is an important limitation because 

it is labor-intensive to collect data with the pressure chamber.  

Future work could focus on measuring WP in leaves taken near the base or halfway 

up the plant, which are older leaves and may be more representative than the upper 

leaves, which were considered in the present study. 
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