

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

A biocatalytic approach for kinetic resolution toward enantiopure anti-cancer β-lactams using *Candida antarctica* Lipase B

Eavan C. McLoughlin and Niamh M. O'Boyle

The School of Pharmacy and Pharmaceutical Sciences, Trinity College, The University of Dublin, Ireland

INTRODUCTION

The combretazet β-lactams are *cis*-restricted analogues of combretastatin A-4 (CA-4, **Figure 1**), chemically manipulated by insertion of the 2-azetidinone scaffold to enhance their *in* vitro and in vivo stability. 3-Hydroxyl combretazets (Figure 1) demonstrate excellent anti-proliferative IC₅₀ values in sub nanomolar ranges across a panel of cancer cell lines. Their 3*S*,4*S* enantiomers/eutomers (**Figure 1**) have been isolated using chiral diastereomeric resolution using *N*-Boc-L-proline.^{1,2} This approach required large process mass intensities (PMI) of approximately 150,000 kg/kg and produced only modest yields (5-10%) of enantiomers, insufficient for progression toward in vivo pre-clinical toxicology studies. Chemoenzymatic kinetic resolution (KR) of enantiomers using lipase Candida antarctica lipase B (CAL-B) in comparison offers a sustainable, greener and safer resolution process.

Figure 1: Chemical structures of combretastatin A-4 and β-lactam enantiomers (3*S*,4*S* eutomers and 3*R*,4*R* distomers)

OPTIMISED KR PROCEDURE

Early experiments resutled in rapid methanolysis and conversion and demonstrated poor *ee*. The most optimal conditions were selected for enantioseparation of 3-hydroxyl 35,45 eutomers and 3R, 3R 3-acetoxy distomers (Scheme 1).

- Reaction quenching *via* filtration at 30-50% conversion/methanolysis.
- Quenching <50 % \uparrow *ee* of 3*S*,4*S* enantiomers.
- Reactions carried out using 3 eq of methanol and 1:2 ratio of CAL-B: racemate.
- Reducing methanol from $10 \rightarrow 3$ eq \downarrow reaction rate.
- Reducing ratio of enzyme: substrate from 1:1 \rightarrow 1:2 \downarrow reaction rate.

 \checkmark \downarrow reaction rate \uparrow *ee.*

3. Isolation of unreacted, enantioenriched 3-acetoxy susbtrate via LC purification followed by further enantioenrichment in a second KR.

Table 1: Optimised CAL-B mediated methanolysis of CAZ-1a - CAZ-8a for isolation of 3*S*,4*S* 3hydroxyl eutomers in 62-86% ee

Scheme 1: Kinetic resolution of chiral combretazet enantiomers using *Candida antarctica* lipase B and methanol in MTBE. Reactions were carried out under continuous stirring in Quick-Thread Glass Reaction Tube 24x150mm using Radley Carousel 12 Plus Reaction StationTM.

Figure 2: XRD of 3S,4S CAZ-6b isolated via KR.

Table 3: Comparison of *ee* values obtained *via* chiral diastereomeric resolution versus KR. 3*R*,4*R* enantiomers isolated as 3-acetoxy derivatives and compared to *ee* values of the corresponding 3hydroxyl enantiomers isolated via chiral diastereomeric resolution.

	Scale (mmol)	Time	conversion ¹	3R,4R 3-acetoxy yield (s)	% ee _s	3S,4S 3-hydroxyl yield _(p)	% ee _p	E ²
CAZ-1a → CAZ-1b	1	24 h	29%	37%	44	36%	82	16
CAZ-2a → CAZ-2b	1	8 d	22%	29%	18	11%	86	16
CAZ-3a → CAZ-3b	1	3 d	40%	54%	52	26%	70	9
CAZ-4a → CAZ-4b	1	5 d	38%	36%	42	17%	81	14
CAZ-5a → CAZ-5b	1	5 d	38%	36%	42	17%	81	8
CAZ-6a → CAZ-6b	1	4 d	45%	31%	66	34%	76	14
CAZ-7a → CAZ-7b	0.1	3 d	41%	11%	40	8%	62	6
CAZ-8a → CAZ-8b	1	6 d	22 %	29%	24	4.3%	62	9
CAZ-9a → CAZ-9b	1	2 d	43%	34%	66	25%	70	12

easured using ¹H NMR at 400 MHz in CDCI,, ² Enantiomeric ratio (*calculated using ENANTIO online tool)*, ^s substrate, ^p product, Reactions were carried out under continuous stirring in Quick-Thread Glass Reaction Tube 24x150mm using Radley Carousel 12 Plus Reaction Station[™].

Table 2: The second kinetic resolution of the double resolution strategy for isolation of 3acetoxy 3*R*,4*R* enantiomers using CAL-B in \geq 98% ee.

Compound	<i>ee</i> prior to second KR (%)	Time	Conversion	3-acetoxy _(s) yield	ee (%)
CAZ-1a	32	4 d	52%	30%	99
CAZ-4a	42	5 d	43%	36%	99
CAZ-5a	40	3.5 d	63%	16%	96
CAZ-6a	66	3.5 d	42%	20%	98
CAZ-9a	64	5 d	36%	16%	99

1:1 CAL-B: 3-acetoxy β -lactam, 6 eq of methanol, 0.5 mmol scale. Reactions were carried out under continuous stirring in Quick-Thread Glass Reaction Tube 24x150mm using Radley Carousel 12 Plus Reaction Station[™].

Figure 3: % conversion and *ee* of 3*S*,4*S* CAZ-2a \rightarrow CAZ-2b during optimisation reactions (1:1 CAL-B: CAZ-2a and 10 eq of methanol) illustrating higher ee between 30-40 hours versus after 60 hours

Table 4: PMI of chiral resolution versus KR

	resolution	resolution
CAZ-1b (<i>S,S</i>)	94	74
CAZ-1a (<i>R,R</i>)	71	99
CAZ-2b (<i>S,S</i>)	78	86
CAZ-4b (<i>S,S</i>)	91	81
CAZ-4a (<i>R,R</i>)	78	99
CAZ-3b (<i>S,S</i>)	66	78
CAZ-3b (<i>R,R</i>)	50	68
CAZ-5b (<i>S,S</i>)	84	76
CAZ-5a (<i>R,R</i>)	85	96
CAZ-6a (<i>S,S</i>)	84	81
CAZ-6b (<i>R,R</i>)	85	98

Chiral diastereomeric resolution				Kinetic resolution							
Total mass required for synthesis	Overall enantiomer yield % (mg)				Total mass rec for synthesis	quired	Overall enantiomer yield % (mg)				
3753 – 4753 g	3 <i>S,</i> 4 <i>S</i> CAZ-1b 7 (25.2)	3 <i>R,4R</i> CAZ-1 9 (32.4)	3 <i>S,4S</i> CAZ-2b 6 (23)	3 <i>R,4R</i> CAZ-2 5(19)	~ 700 mg		3 <i>S</i> ,4 <i>S</i> CAZ-1b 16-36 (30-130)	3 <i>R,4R</i> CAZ-1a 60 (30)	3 <i>S,</i> 4 <i>S</i> CAZ-2b 6-16 (6-30)	3 <i>R,4R</i> CAZ-2 Nd	
PMI (kg/kg)	148,810	-188,492	117,187 – 141,049		PMI (kg/kg)		5-23	23	23-116	Nd	
Fold reduction in PMI using KR versus chiral diastereomeric resolution (minimum)		3S,4S CAZ-1b 6470		3 <i>R,4R</i> CAZ-1a 6470	3 <i>R,4R</i> CAZ-1a 6470		3S,4S CAZ-2b 1010		3 <i>R,</i> 4 <i>R</i> CAZ-2		

CONCLUSIONS

- Isolation of a panel of β-lactam enantiomers in excellent *ee* using a sustainable biocatalytic approach with lipase enzyme CAL-B has been achieved.
- Ring opening reactions of 3-acetoxy β-lactams have not been not observed underpinning chemical stability of β-lactam ring, of relevance for formulation strategies.
- Reduction >6000 fold in PMI using KR versus diastereomeric resolution. KR is a sustainable and greener alternative to chiral diastereomeric resolution.
- Cost effective and reduces requirement for skilled labour.
- Rapid and accessible process proposed for scale up and commercial development of novel anti-cancer combretazet APIs for the treatment of triple negative breast and chemo-resistant colorectal cancers.

ACKNOWLEDGEMENTS

REFERENCES

We would like to than the Royal Society of Chemistry Research Enablement Grant (E22-0457725696 for funding this research.

1. McLoughlin, E.C.; O'Brien, J. E.; Trujillo, C.; Meegan, M. J.; O'Boyle, N. M., Application of 2D EXSY and qNMR Spectroscopy for Diastereomeric Excess Determination Following Chiral Resolution of β-Lactams. ChemistryOpen 2022.

2. McLoughlin, E. C.; Twamley, B.; O'Brien, J. E.; Hannon Barroeta, P.; Zisterer, D. M.; Meegan, M. J.; O'Boyle, N. M., Synthesis by diastereomeric resolution, biochemical evaluation and molecular modelling of chiral 3-hydroxyl b-lactam microtubule-targeting agents for the treatment of triple negative breast and chemoresistant colorectal cancers. Bioorg Chem 2023, 141, 106877.

The 9th International Electronic Conference on Medicinal Chemistry 01–30 November 2023 | Online

