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Abstract: Algal blooms are harmful and can hinder the use of water. Remote sensing satellite images 

can help monitor the spatial-temporal distribution of these blooms. This helps us understand their 

dynamics and better manage them. In our work, we develop an algorithm using Sentinel-2 images. 

The validated algorithm showed good accuracy, suggesting the potential use of Sentinel-2 images 

to monitor algal blooms in other water bodies. 
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1. Introduction 

Lakes and reservoirs are valuable natural resources that offer essential ecological, 

environmental, and hydrological services. Cyanobacterial blooms are a serious problem 

in freshwater bodies, often suffering from eutrophication and mismanagement of water-

sheds [1]. They can produce lethal cyanotoxins that threaten human health and aquatic 

inhabitants [2,3]. Therefore, to plan possible measures for protecting these natural ecosys-

tems, innovative technologies, and methods for monitoring water quality are needed. Un-

like classical in situ ground measurement methods that involve expensive field visits to a 

few sites in a lake, Earth Observation (EO) data can provide frequent surveys over a large 

area in a cost-effective way [4,5].   

The latest generation of multi-spectral sensors on board of Sentinel-2 satellites is now 

used to assess the intra-annual spatial and temporal dynamics of phytoplankton abun-

dance in shallow eutrophic lakes [4]. In order to estimate chl-a pigment, the development 

of satellite reflectance algorithms associated with phytoplankton biomass should be done 

[6]. Chl-a found in phytoplankton, can be sensed by a variety of current and near-future 

satellite imaging. The newest generation of medium-resolution multispectral sensors on 

board such that Landsat-8 and Sentinel-2 satellites are now offering promising analysis 

for monitoring water quality [7,8] because of their fine spatial resolution, revisit time, and 

improved spectral band configuration in the visible-near-infrared wavelength range.  

    Chl-a has been widely estimated through remote sensing techniques [9]. How-

ever, few algorithms have been proposed for estimating chlorophyll-a as a proxy for 

productivity in eutrophic inland water using Senitnel-2. Since Sentinel-2 MSI has a band 

at 705 nm (B5), it can capture a chl-a peak. 

In an aim to better understand the dynamics of cyanobacterial blooms, an algorithm 

based on Sentinel 2 was developed and validated. The algorithm was then used to map 

the spatial and temporal dynamics of these blooms throughout the reservoir.  
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2. Materials and methods 

2.1. Study site 

Karaoun Reservoir is the largest freshwater body in Lebanon. The reservoir is used 

for power production and irrigation. It has a surface area of 12 km2 at full capacity, a max-

imum and mean depth of 60 and 19 m, respectively [10]. The reservoir is classified as 

hypereutrophic and monomictic water body with occurrence of cyanobacterial blooms 

during Spring and Summer seasons [11,12], representing an interesting study case. 

2.2. Field measurements 

In situ measurements of chl-a concentration were collected for band testing and algo-

rithm development. Data were collected on Jul. 15th, 2016, Sep. 18th, 2017, Oct. 18th, 2017, 

and Aug.29th 2018, of a total of 23 sampling sites (n=23). Similarly, an independent dataset 

was collected on Jun.30th 2017, Oct. 28th, 2017, Aug. 9th, 2018, Oct.3rd 2018, and Oct. 23rd 

2018, for validation purposes and consisted of a total of twelve sampling locations (n=12). 

All campaigns were performed during Sentinel-2 overpasses.  

Chlorophyll-a quantification was carried out according to the Lorenzen method (Lo-

renzen, 1967). A triplicate of each sample was filtered using Whatman GF/C filters. Chlo-

rophyll-a was then extracted using 90 % acetone by ultrasonication. The extracts were 

centrifuged at 3500 rpm for 12 min and then quantified using a spectrophotometer. 

Spectroradiometric measurements were taken at several sites throughout the reser-

voir, in synchronous with satellite overpass, on 18 Sep. 2017 and 18 Oct. 2017 using a field 

spectroradiometer (ASD Field Spec 4) within a spectral range of 350-2500 nm, and accord-

ing to the SeaWiFS protocol [13]. To remove the glint effect, the method of [14] was ap-

plied. 

2.3. Satellite data acquisition  

A total of 38 cloud-free Sentinel-2 Satellite images were downloaded freely from the 

USGS. They are all level 1T processed. Dates covered are between Aug. 20th, 2015 and 

Oct. 28th, 2018. The Sentinel-2 imagery consists of nine scenes  collected in coincidence 

with in-situ measurements taken in 2016, 2017, and 2018.  

 2.4. Processing images 

Radiometric and atmospheric corrections were applied to the downloaded level 1 

satellite images. Pre-processing steps of Sentinel-2 images consisted of radiometric cali-

bration on SNAP, resampling bands on ENVI, atmospheric correction on 6S, and applying 

an algorithm on ArcGIS. Sentinel-2 images were corrected using the 6S code (Second Sim-

ulation of the Satellite Signal in the Solar Spectrum), a radiative transfer code for modeling 

atmospheric scattering effects [15]. The Aerosol Optical Depth (AOD) values needed as 

input for 6S were extracted from NASA's AERONET (AErosol Robotics NETwork) pro-

gram.  

2.5. Algorithm development 

A semi-empirical band ratio approach was chosen after testing multiple ones. Reflec-

tance data were acquired from the first eight bands of Sentinel-2. The model was applied 

in the form of simple linear regression Y=aX+b; where Y is the measured chl-a concentra-

tion, X is the applied band or band combination, a is the regression coefficient for X and b 

is the constant term. The coefficient of determination R2 and the Pearson correlation coef-

ficient were applied , searching for the best band combination.  

3. Results 

3.1. In situ results 
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Figure 1 shows the distribution of chl-a during nine field campaigns in 2016, 2017 

and 2018. Four dates were used for calibration and five dates for validation. Both figures 

show wide ranges and variability across the sampled areas. Chl-a concentrations ranged 

from 8.3 to 169 μg/L with a mean value of 63.83 μg/L. Highest spatial variation of [chl-a] 

occurred on 18 Oct. 2017 and 28 Oct. 2018 with a standard deviation of 30.67 and 64.35, 

respectively. 

 

 

Figure 1. A box plot showing ground measurements chlorophyll-a concentrations used for (a) cali-

bration and (b) validation. 

 3.2. Chl-a concentration algorithm: calibration and validation 

On a single-band level, Band 5 was correlated the most with in situ PC measure-

ments, with R2= 0.69 and R=0.831. For band combinations, the best fit between bands re-

flectance and actual PC measurements was found for the band ratio B5/B4 with R2=0.862. 

Based on these findings, the empirical band ratio model was developed using a Red band 

4 of spectral resolution (650-680 nm) with Vegetation Red Edge band 5 (698-713 nm) to 

estimate chl-a at Karaoun Reservoir. The algorithm is shown in (Equation 1) 

 Chl-a (μg/L) = 79.9 (B5/B4) - 57.2       (1) 

An independent dataset (n=12) acquired on June 30th 2017, August 9th, 2018, and on 

3rd, 23rd, 28th of October 2018, was used to evaluate and validate the performance of the 

developed band ratio algorithm using the established regression coefficients. During the 

mentioned dates cyanobacterial blooms dominated the Karaoun Reservoir, with a high 

chl-a concentration ranging from 8.3 to 169 μg/L.  

Figure 2 shows the scatter correlation plot between measured and predicted chl-a 

content from the developed band ratio algorithm with a high coefficient of determination, 

R2 = 0.8.  
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Figure 2. Chl-a algorithm a) calibration and b) validation. 

Figure 3 shows the spatio-temporal variations of chl-a concentration for the cloud free days between 2015 and 2017 

produced using the validated algorithm. Chl-a values mostly ranged between 5 and 190 μg/L. Expect for may and 

august 2017, a heterogenous spatial distribution was noticed throughout the reservoir. 

 

 

Figure 3. Maps of chlorophyll-a concentration between year 2015 to year 2017 on Karaoun Reser-

voir. 

Discussion 

Assessment of chl-a by remote sensing uses its characteristic absorption features be-

tween 440 nm and 560 nm and at 670 nm [16]. Chl-a reflectance peak region (700–720 nm) 

may move toward a longer wavelength when phytoplankton is abundant. Results of [17] 

showed that the amplitude of the 705 nm peak against the 665-740 nm (B4-B6 of Sentinel-

2) baseline was in very good correlation with chl-a concentration in the studied lakes (R2 = 

0.83). Since Sentinel-2 MSI has a band at 705 nm (B5), it can capture a perfect chl-a peak. 

The algorithm developed in this study is comparable to others. Pinardi et al, 2018 also 

developed an algorithm on an Italian lake using the band ratio of Bands 4 and 5 Senintel-

2 images [4].   
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This study is the first attempt to evaluate the performance of the Sentinel-2 MSI sen-

sor on chl-a retrieval algorithms coupled with in situ data at Karaoun Reservoir, located 

in an understudied region. The results achieved in this study have presented the use of 

simple linear regression analysis to develop an algorithm for chl-a estimation. After test-

ing the bands of Sentinel-2, we have chosen most suitable ratio from the highly correlated 

band ratios with the actual chl-a concentration.  

The results are very encouraging for inland water monitoring and research. This al-

gorithm will assist in monitoring phytoplankton blooms and supporting water manage-

ment decisions for the optimal utilization of Karaoun Reservoir. The applicability of this 

algorithm was tested under high chl-a values and can be used on other eutrophic in inland 

waters. 
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