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Abstract: Sustainable and efficient agricultural production is a growing priority in modern society. 

Viticulture, an important agricultural and food sector, also faces this challenge. Precision Viticulture 

(PV) has gained prominence as it aims to foster high-quality, efficient, and environmentally sustain-

able practices. The Soluble Solids Content (SSC) is essential for assessing grape ripeness and quality 

in the winemaking process. Conventional methods for determining SSC values (expressed in ºBrix) 

are invasive, expensive and labour-intensive, necessitating sample preparation, making large-scale 

analysis impractical. In response to these limitations, this study presents an innovative approach 

within the field of Precision Viticulture. It focuses on the non-invasive prediction of SSC using low-

cost Proximal Hyperspectral Optical Sensors. These sensors rely on spectral reflectance measure-

ments in the range of 340-850 nm. The study was conducted in a commercial vineyard in the De-

marcated Douro Region, Cima-Corgo sub-region, Portugal, over six weeks during ripening. 169 

grape berries from Touriga Nacional vines were analyzed under three irrigation regimes (no irriga-

tion, 30% ETc, and 60% ETc). After organizing and preprocessing the data, machine learning algo-

rithms, namely Partial Least Squares Regression (PLS), Random Forest (RF), and Generalized Linear 

Model (GLM), were applied to predict SSC values. These models' performance was thoroughly 

evaluated using cross-validation techniques. The performance of different models was evaluated 

showing significant differences, according to the metrics used (R2, RMSE and MAPE). The RF model 

demonstrated effectiveness and precision. A high R² value of 0.9312, coupled with low RMSE 

(0.9199 ºBrix) and MAPE (3.88%), signifies a strong fit to the data and accurate predictive capabili-

ties. The results of this benchmarking study on predictive models of SSC provide valuable insights 

into the performance of various models, aiding winegrowers and winemakers in decision-making. 

Keywords: grapes berries; machine learning; point-of-measurement; quality-gap; sugar content; Vi-

tis vinifera  

 

1. Introduction 

The grapevine (Vitis vinifera L.) is a traditionally non-irrigated crop, but given the 

need to adapt to climate change on viticultural activity, several studies have shown that 

changes in the water status of the vine at critical phenological stages have a direct effect 
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on the composition and qualitative attributes of the grape, affecting vegetative growth, 

yield, the microclimate of the canopy and the metabolism of the fruit [1,2]. 

In the vineyard, careful management is essential to determine the harvest date and 

select grapes at optimum ripeness according to the desired characteristics. Some methods 

traditionally used to measure physiological parameters in the vineyard, such as Soluble 

Solids Content (SSC), expressed in ºBrix, are destructive, expensive, laborious as they re-

quire the preparation of samples and do not allow them to be spatialised from a PV per-

spective, making them less useful [3]. The real-time determination of processes related to 

abiotic stress and physiological processes related to fruit ripening (SSC, anthocyanins, ca-

rotenoids and organic acids) provides support for precision practices of great relevance to 

vineyards and wine [4]. The environmental conditions that most strongly influence °Brix 

include sunlight, temperature, and humidity. Irrigation timing also affects °Brix since re-

duced water availability during fruit development [5]. 

The common procedure used today by wine producers to evaluate the maturity of 

the grapes in a vineyard is using a refractometer [6]. Proximity hyperspectral optical tech-

nologies, such as Hyperspectral Optical Sensors (HOS), offer potential in the non-destruc-

tive and cost-effective assessment of grape ripeness in wine. However, high costs are still 

a challenge for most farmers. INESC TEC, in partnership with the Faculdade de Ciências da 

Universidade do Porto (FCUP), has been developing low-cost HOS and thus be able to have 

a cause-effect physiological adherence to the spectral data collected in vineyards. After 

collecting the spectral data, it was processed and analysed. Machine learning (ML), an 

area of AI, develops models to learn from data, improve performance by identifying com-

plex patterns and use them in predictions. This strategy has wide applications, both in 

agronomic decisions regarding crop performance in a given environment and in support-

ing cultural practices [7]. Despite these promising technological advances, there are still 

factors limiting the full adoption of PV systems, particularly in validating this Proximal 

(HOS) under field conditions. These include shortcomings in terms of data acquisition, 

processing, and modelling to obtain useful information. Lack of high-throughput system 

for mapping spacio-temporal in vineyard to fill the quality-gap in the context of PV.  

Monitoring grapevines over the ripening process in different hydric regimes, the 

main goal of this study is fto develop a predictive model of SSC based on proximal detec-

tion data. The specific goals include: i) testing the performance of low-cost sensor devel-

oped at INESC TEC, ii) to benchmark of ML models for SSC prediction, comparing the 

performance of each, using appropriate metrics, after applying pre-processing techniques 

to minimise undesirable effects, reducing data dimensionality and the matrix effect (spec-

tral information on grape composition is characterised by multi-scale interference) and iii) 

analysing the performance of predictive SSC models in different hydric conditions.  

2. Materials and Methods 

2.1. Grape Sampling and data acquisition 

This research, carried out in the Douro, was implemented at Quinta dos Aciprestes - 

Latitude 41.21° N; Longitude 7.43° W. The farm is located next to the river, at altitudes of 

between 100 and 350 metres, in the Douro Demarcated Region, sub-region of Cima-Corgo. 

The farm benefits from a Mediterranean climate, with two distinct seasons: the wet season 

from October to April and the dry season from May to September. The experimental de-

sign used was randomised blocks, in each block including 6 plants subjected to different 

irrigation treatments: No Irrigation (NR); 30% Crop Evapotranspiration (30% Etc) and 

60% Crop Evapotranspiration (60% Etc). To obtain the most optimised model, it is crucial 

to evaluate the SCC of grapes from the initial ripeness stage until the ideal harvesting 

time. For each irrigation treatment, 4 grape berries were collected from each vine, in 2 

rows and in 2 different locations in the row, over 6 weeks. Each week, one per vine was 

randomly selected from these berries, totalling 169 samples (Jul 28th: n=36, Aug 4th: n=36, 

Aug 11th: n=8, Aug 18th: n=18, Aug 25th: n=35, Sep 1st: n=36). 
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The SSC expressed in ºBrix, of the grapes was measured using an RHB-32ATC port-

able refractometer (Laxco Inc., Bothell, WD, USA) - destructive method. The refractometer 

measures from 0 to 32°Brix, with an accuracy of 0.20°Brix and a resolution of ±0.2°Brix. It 

was calibrated with a drop of distilled water and set to read 0 °Brix. The grapes previously 

measured by the spectroradiometer (next section) were carefully cut and pressed to use 

their juice for analysis with refractometer. For the spectral acquisition, the equipment ac-

quires spectra covering the ultraviolet, visible and near-infrared zones, recording hyper-

spectral signatures between 340 nm and 850 nm of the electromagnetic spectrum [8]. This 

sensor has an LED light source (active sensor), which makes it possible to obtain spectra 

at night [9]. Hyperspectral point-of-measurement (HS-POM) measurements were taken 

by touching the berry to the light source, the power of the light source and the integration 

time were adjusted for optimal recording of the spectra within the linear quantification 

region and, finally, the grape spectra were stored. each spectrum was associated with the 

corresponding SSC reference measurements, resulting in the final dataset. 

2.2. Modelation 

The preprocessing data includes the filtering and reduction of spectral data. The hy-

perspectral data was filtered using the Savitzky-Golay digital filter, to smooth the data, 

reduce noise, and preserve the important characteristics of the signals. Different window 

sizes were evaluated, assessing the impact on the result. Due to the dimensionality of the 

data, Principal Component Analysis (PCA) was also conducted on the standardised data 

set. This means that the data was centred (by subtracting the mean of each variable) and 

scaled (dividing by the corresponding standard deviations) before the PCA analysis, en-

suring that variables with different scales do not dominate the principal components (PCs) 

due to their magnitudes and mitigating the matrix effect. 

Throughout this study, different ML methods were evaluated to predict the SSC. The 

ML methods considered were: Random Forest (RF); Generalised Linear Model (GLM) and 

Partial Least Squares (PLS) [10]. RF is a model that is tolerant of data noise, its performance 

is high in determining spectral reflectance measurements due to its low sensitivity to out-

liers [11]. For this reason, two tests were conducted using RF, with spectral data filtered 

without PCA selection and with PCA selection, adjusting hyperparameters by Random 

Search. The PLS model was evaluated using Leave-One-Out Cross-Validation (LOOCV) 

and selection of the number of components (ncomp) based on the criterion of the lowest 

RMSE value. Finally, the GLM model can be used to model a variety of distributions for 

the dependent variable, such as in the situation where the data does not follow a normal 

distribution. The model was trained with a Gaussian distribution with cross-validation 

for the selection of PCs and different hyperparameters were evaluated (distribution fam-

ily, link functions) as well as other linear regression, Ridge and LASSO Regressions. 

  To assess the generalisation capacity of the different models evaluated, the data was 

divided into two different sets by random sampling without replacement: the training set 

(70% of the data) and the validation set (30%). To assess the performance of each model 

evaluated and select the most robust, the following metrics were used: Coefficient of de-

termination R2; root mean square error (RMSE); mean absolute percentage error (MAPE). 

Residual analysis: tests and analysis distribution of residual in the irrigation treatments. 

3. Results 

Analysing the average spectral curves per irrigation treatment (Figure 1), according 

to the absorption of the photosynthetic pigments, the reflectances of the irrigation treat-

ments indicate that the NR treatment has the highest concentration of chlorophyll a (428 

and 453 nm), chlorophyll b (642 and 661 nm) and carotenoids (400 and 500 nm) [12]. On 

the other hand, the 60% Etc treatment shows lower reflectances in the chlorophyll and 

xanthophyll range (540-580 nm) [13] and anthocyanins (550 nm) [14]. 



Biol. Life Sci. Forum 2023, 27, x 4 of 6 
 

 

 

Figure 1. Spectral averages per irrigation treatment from July to September. 

The SSC predictive capacities of the models evaluated were assessed on the training 

and the validation sets and are shown in Table 1. Comparing the two results obtained for 

each model evaluated allows the most robust to be selected and overfitting to be analysed.  

Preprocessing: Although 5 components explain 99% of the total variance, 3 to 15 PCs 

were considered for training and validating the different ML models, according to the 

results of the cross-validation applied to assess their performance. 

Table 1. Performance of the different ML models obtained in the training and validation sets for 

determining the SSC. 

Models 

Training Set  Validation Set 

R2 RMSE (ºBrix) 
MAPE 

(%) 
 R2 RMSE (ºBrix) MAPE (%) 

RF 0.9895 0.3988  1,49  0.9312 0.9199  3.88 

PCA+RF 0.9427 0.9072  3.66  0.7134 1.8585 8.35 

PCA+PLS 0.6427 2.0696  0.08  0.6382 2.0414 0.09 

PCA+GLM 0.9991 0.1009 0.00  0.9990 0.1076 0.01 

The PCA+GLM model shows excellent results in the training and validation sets, 

with extremely high R² values and low RMSE and MAPE. However, these extremely good 

results may show overfitting due to the high complexity [15]. Cross-validation stratified 

in relation to the different lambda values returned (data not showed) an RMSE of 3.45 

ºBrix and a MAPE of 17.72 %, with relatively high cross-validation errors (MSE between 

9.5 and 12.5). The RF model shows a slight drop in R² in the validation set compared to 

the training set. The PCA+RF model shows a significant drop in R² and an increase in 

RMSE and MAPE in the validation set compared to the RF model. The PCA+PLS model 

has a moderate performance in terms of R² on the validation set, but an extremely low 

RMSE and MAPE. Given these results, the RF model was the most effective. 

The SSC was estimated using the training and test sets of TN samples collected over 

the period under analysis. Figure 2 shows the results of the SSC estimation on both sets, 

allowing us to compare the predicted SSC values with the observed ones and conclude on 

the model's performance in terms of its generalisation capacity. According to the metrics 

obtained in the validation set, the model explains 93.1 % of the variance in the data (R2 = 

93.1 %), with an average error of the predictions compared to the observed values of 0.920 

(RMSE = 0.920 ºBrix) and an average accuracy of the predictions deviating 3.9 % from the 

real values (MAPE = 3.88 %).  

Figure 3 presents the model’s residuals plotted against the observed ºBrix. 

 

NR 

30%Etc 

60%Etc 
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Figure 2. Results of the predictions from the valida-tion set with Touriga Nacional (TN) berry sam-

ples (dots circled) when applied to the Random Forest model trained with TN samples from the 

training set (dots). 

 

Figure 3. Distribution of model residuals (validation set) for different irrigation regimes. 

The residuals spread on both sides of the “zero line” with no tendency of the 

residuals. The Shapiro-Wilk test results returned the W-Statistic value = 0.96607 and the 

p-value = 0.1512 (p_value>0.05). The ANOVA (F = 0.262; p>0.05) confirmed no significant 

differences between the irrigation treatments. 

4. Discussion 

In the spectral averages per irrigation treatment, 2 peaks of reflectance are visible. 

Reflectance in the 420-460 nm range is related to the absorption of chlorophyll a [12], 

which are green pigments involved in photosynthesis. However, the significant presence 

of these pigments in ripe grapes is unusual, as the plant directs energy towards the pro-

duction of ripening-related compounds rather than chlorophyll. Therefore, it may be more 

related to carotenoids. Carotenoids are common in many fruits and vegetables, including 

grapes, as they are responsible for colours ranging from yellow to red. Visible reflectance 

in the 500-600 nm range may be related to anthocyanins, which are the pigments respon-

sible for the red and purple colours in red grapes [14]. 

The application of low-cost hyperspectral optical sensors with Machine Learning 

models for precision viticulture presents a promising alternative to destructive and ex-

pensive conventional techniques. The developed RF model seems to be the safest choice 

in terms of overfitting, as it performs well in the validation set and has a moderate differ-

ence between the training and validation sets. The model's evaluation metrics show that 
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can explain approximately 98.95% of the variability in SSC values with high precision. The 

PCA+RF model shows a significant drop in R² and an increase in RMSE and MAPE in the 

validation set compared to the RF model. This suggests that dimensionality reduction 

with PCA led to a loss of valuable information and poorer performance, leading to over-

fitting, due to the loss of information during dimensionality reduction. The PCA+PLS 

model has a moderate performance in terms of R² in the validation set, but an extremely 

low RMSE and an almost zero MAPE. This may be indicative of a model with a high bias. 

Finally, the PCA+GLM model shows results suggesting overfitting, which occurs when 

an ML model overfits the training data, including noise, reducing its performance on new 

data sets. This means that the model fits the training data so well that it cannot generalise 

effectively to independent data, thus affecting the model's ability to predict accurately. 

Essentially, the model learns not only the actual structure of the data but also random 

fluctuations, which reduces its usefulness in real situations [15]. 

The RF model is the most robust choice, as it performs well in the validation set and 

there is slight difference between the training and validation sets. The residuals analysis 

confirmed the null hypothesis (H0) that the residuals follow a normal distribution, and 

their homoscedasticity is satisfied, i.e., the variance of the residuals does not vary signifi-

cantly as the predicted values increase. The RF model proved to be effective and accurate. 

The high R² value (0.9312), the relatively low RMSE (0.9199 ºBrix) and MAPE (3.88%) in-

dicate that the model is well adjusted to the data and can make accurate predictions. This 

model was tested on a dataset with high variability in SSC values. The results demonstrate 

that the irrigation treatments did not significantly impact the model's performance, which 

indicates the potential generalization of the model's results. These results are in line with 

other studies carried out in the Douro region, R² value (0.959) and RMSE (1.026 ºBrix) [16], 

as well as in other regions, namely the Mediterranean, R² value (0.83) and RMSE (1.99 

ºBrix) with an RF model applied to the Syrah grape variety [17]. 

5. Conclusions 

This work allowed benchmarking of SSC predictive ML models. Differences in the 

performance of 4 models tested on TN grape berries collected throughout the ripening 

period were demonstrated. The RF model is the most robust, not only because it is one of 

the models with the highest rate of explanation of the variation in SSC by the independent 

variables (R2 = 0.9312), but it is also the safest choice in terms of overfitting. The MAPE 

values suggest that the model can make good predictions on both the training data (1.49% 

MAPE) and the test data (3.9% MAPE). The different irrigation treatments and the ripen-

ing date did not have a significant impact on the predictive abilities of the model. 

The potential demonstrated by some of the models justifies the investment in low-

cost Hyperspectral Optical Sensors, such as Metbots. Evaluating the generalization capac-

ity using different vintages could generate new studies related to the rapid and non-de-

structive assessment of the ripeness of wine grapes. 
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