

Extraction and HPLC-UV Analysis of Usnic Acid in *Usnea barbata* Collected in the Altai Krai

Georgiy Rodionovich Kutateladze, Irina Nikolaevna Anikina

Department of Pharmacy, Altai State Medical University, Ministry of Health of Russian Federation, 40, Lenina Str., 656038 Barnaul, Russia

Introduction

Usnea barbata L. (Parmeliaceae Zenker.) is used in folk medicine as an H_3C antimicrobial agent in various diseases of bacterial genesis (bronchitis, tuberculosis, microbial eczema). The antimicrobial activity of Usnea is associated with the presence of the lichen acids, especially usnic acid.

Aim

Aim of the study is isolation, identification and assay of usnic acid by High Performance Liquid Chromatography.

Research Object

Raw material - lichen Usnea barbata collected from tree

Fig 1. Usnic acid

branches in the Altai Krai during the growing season (June-July 2022).

Research Design

The chromatographic separation conditions:

- chromatography column reverse-phase, ProntoSIL 120-5 C18 (75×2.0 mm, 5 μm);
- column oven temperature 40°C;
 mobile phase 0.1% aqueous solution of trifluoroacetic acid (solvent A) and 100% acetonitrile (solvent B);
 mobile phase flow rate 150 µL/min with gradient elution, initialy from 10 to 50% of solvent B in 5 minutes, gradually increased to 100% up to 20 minutes
- **detection** UV-spectrophotometric detector (λ = 230, 280 nm)
- reference sample 0.05% usnic acid acetonitrile solution sample injection volume 4 μL using an autoinjector
- chromatogram processing by «MultiChrome for Windows» software

Results

Conclusion

- 1. By comparing the retention times ($\tau = 14.9\pm0.1$ min) and spectral characteristics (λ max = 230, 280 nm) with those of the 0.05% UA reference sample solution ($\tau = 15.0\pm0.1$ min), the presence of UA in the studied thallus was established.
- 2. Quantitative content, calculated from the peak area, compared with the peak area of the reference sample -1.45±0.07%.

References

- [1] Prateeksha, Paliya BS, Bajpai R, Jadaun V, Kumar J, Kumar S, Upreti DK, et al. The genus Usnea: A potent phytomedicine with multifarious ethnobotany, phytochemistry and pharmacology. RSC Adv. 2016; 26: 21672–21696. Available from: https://doi.org/10.1039/C5RA24205C
- [2] Sokolov DN, Luzina OA, Salakhutdinov NF.

Fig 2. Chromatograms and UV-spectra of the studied extract (A) and a reference solution of usnic acid (B)

Usnic acid: preparation, structure, properties and chemical transformations. *Russ. Chem. Rev.* 2012; 81 (8): 747-768. Available from: https://doi.org/10.1070/RC2012v081n08ABEH004245 [3] *Krylov IA, Sherstennikov NV, Kubasova ED. et al.*

Prospects for the search and development of new original pharmaceutical substances derivatives of usninic acid extracted from lichens (review). *The Bulletin of Contemporary Clinical Medicine.* 2023; 16 (4): 97-103. Available from: https://doi.org/10.20969/VSKM.2023.16(4).97-103.

[4] Nikulin AV, Yamshchikova SI, Potanina OG, Abramovich RA.

Determination of usnic acid in the blastemas of a lichen of the genus Cladonia by HPLC-UV. *Farmatsiya.* 2020; 69 (3): 44–49. Available from: https://doi.org/10.29296/25419218-2020-03-06

The 9th International Electronic Conference on Medicinal Chemistry 01–30 November 2023 | Online