

Proceedings Indicator Carbon-Paste Electrode for Voltammetric Analysis

Dmitry Aronbaev ^{1,*}, Sergey Aronbaev ¹ and Dilnoza Isakova ²

- ¹ Candidate of Chemical Sciences, Associate Professor, Samarkand State University, Republic of Uzbekistan, Samarkand, ORCID 0000-0003-1466-4054
- ² Doctor of Chemical Sciences, Professor, Academician of the Russian Academy of Natural Sciences, Samarkand State University, Republic of Uzbekistan, Samarkand, ORCID 0000-0002-4934-48695
- Assistant of the Uzbek-Finnish Pedagogical Institute, Republic of Uzbekistan, Samarkand, ORCID 0000-0001-6408-2576.
- * Correspondence: diron51@mail.ru; Tel.: +998902243129

Abstract: The design of an indicator electrode made of carbon paste of ergonomic design for the 11 voltammetric determination of a number of substances of inorganic and organic origin is described. 12 The electrode is made of a graphite rod with a diameter of 6 mm and a length of 70 mm, covered 13 with insulation and having a cavity filled with an electroactive carbon-containing material at the 14 end of the rod. The characteristic features of the proposed electrode - the insulating shell of the 15 housing made of shrink tubing and the electrolytic coating of the cavity surface with a conductive 16 metal film - make it possible to simplify the design of the electrode and increase mechanical strength, 17 extend the service life of the electrode, and also provide the possibility of volumetric and surface 18 modifications with an economical consumption of modifying reagents. 19

Examples of the use of an indicator electrode modified with mercury and bismuth films and volumetrically modified with manganese dioxide nanoparticles in the analysis of food, beverages, natural objects for the content of heavy metal ions and pharmaceuticals for the content of hydrogen peroxide, vitamins of groups B and C are given. 23

The simplicity of making the developed indicator electrode from carbon paste, mechanical strength24and cost-effectiveness when using expensive and scarce modifiers allow us to recommend it for use25in voltammetric analysis and the creation of various biosensor systems.26

Keywords:carbon-paste electrode; modified carbon-containing electrodes; voltammetric analysis;27cyclic and differential-pulse voltammetry; heavy metals; hydrogen peroxide; vitamin B2; determination282929

1. Introduction

Voltammetry as a method of analysis over the years of its existence has passed a long 32 evolutionary path full of hopes, disappointments, and triumph. Conceived at the beginning by J. Geyrovsky as a polarographic method for the determination of heavy metals 34 using a mercury dripping electrode, by now voltammetry has acquired modern features 35 and has taken its place among the physico-chemical methods of analysis, making them a 36 strong competition [1,2]. 37

This was facilitated not only by the expansion of the theoretical foundations of the 38 method, but also by original engineering and technical solutions. So, the dripping mer-39 cury electrode was replaced by solid electrodes, first mercury-film, and then modified 40 electrodes [3,4]. The application design of voltammetric analysis has also changed, devices 41 have appeared that provide various modes of potential scanning: linear, square-wave, 42 differential-pulse, cyclic, which has significantly expanded the scope of the method, in-43 cluding the determination of microconcentrations of substances of inorganic and organic 44 origin. 45

Citation: Aronbaev, D.; Aronbaev, S.; Isakova, D. Indicator Carbon-Paste Electrode for Voltammetric Analysis. 2023, 4, x. https://doi.org/10.3390/xxxx

Academic Editor(s):

Received: date Accepted: date Published: date

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2023 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 2

4

1

9

10

30

At the same time, the main problem of electroanalytics remains the possibility of obtaining a stable and reproducible under the selected conditions of removing the voltammogram of the analytical signal 3

Considering the fact that the formation of the electrode response in the electrochemical system occurs at the interface of the electrode-solution phases, the success of measuring the analytical signal, which is determined by its magnitude and reproducibility, will depend on the correct choice of the electrode, i.e. the nature of the material, the state of its surface, the presence of modifying substances, etc. As a result, considerable attention should be paid to the material of the electrodes, methods of their chemical and physical modification, methods of regeneration and expansion of the working area of potentials.

From this point of view, carbon-containing materials, for example, graphite and glass 11 carbon, are an excellent material for the construction of electrodes for voltammetric analysis. It is the combination of mechanical, chemical and electrical properties of these materials that makes it possible to create electrodes with specified sensitivity and selectivity 14 parameters [3]. 15

The 60 – 70 years of the last century were the time of the creation and widespread 16 use of carbon paste electrodes. The main idea in creating carbon-paste electrodes was to 17 produce an electroactive paste consisting of a mixture of graphite powder and binder [5], 18 which, as a rule, uses non-drying oils [6]. This paste was filled with a glass or teflon tube, 19 inside of which there was a metal piston that simultaneously acted as a piston for pushing 20 a portion of carbon-containing paste out of the tube and an electrical contact for connection to the measuring device. 22

Modification of the surface of the carbon-paste electrodes with a mercury film obtained by the ex- or in situ method made it possible to abandon the dripping mercury electrode.

Since then, many designs of carbon paste electrodes have been proposed for various variants of voltammetric analysis [7]. These electrodes have found their application in the analysis of a number of inorganic and organic substances. An example is a recent review [8].

However, most of these devices, despite satisfactory metrological parameters of analytical signal measurements, had a limited service life, and the electroactive paste was prepared almost daily. This, especially in cases of manufacturing and using modified electrodes, leads to overspending of scarce and expensive modifiers that are part of carboncontaining pastes.

The aim of this work is to present a new ergonomic design of a carbon-paste electrode for voltammetric analysis and to demonstrate its capabilities.

2. Experimental

The main task that the authors of this article faced was to simplify the design of solid 38 electrodes designed for voltammetric measurements, increase the reliability of their operation and expand the range of carbon-containing composite materials with economical 40 consumption of the modifier included in their composition. 41

An electrode was manufactured, the design features of which are described in detail 42 in our previous works [9,10]. As a prototype, when applying for a patent, we used the patent No. 1315884 USSR [11] in particular, the second option for manufacturing an indicator electrode. 45

The carbon-containing paste was prepared by mixing fine graphite powder obtained 46 by grinding the same material as the blanks themselves with molten paraffin in a ratio of 47 50:50% (wt.) [12]. 48

Volumetric modification of the composite mixture, in accordance with the task, was carried out by introducing a modifier reagent into the molten carbon–containing paste with thorough mixing. 51

37

23

24

25

26

27

28

29

30

31

32

33

34

35

The molten modified carbon-containing mass was placed in the hole of the electrode 1 blank. At the same time, the volume of paste placed in the well is only 0.05 – 0.1 cm³. The 2 electrochemical behavior of the manufactured electrodes in the presence of the analyzed 3 substances was studied by removing voltamperometric curves in a glass 3-electrode cell 4 using a universal polarograph PU-1 [13] and a potentiostat- galvanostat P-40X. 5

3. Results and discussion

Figure 1 shows the proposed electrode.

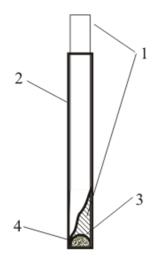


Figure 1. Coal paste electrode for voltammetric analysis. 1 - Graphite rod electrode housing; 2 -9Insulating sheath from heat shrink tube; 3 - Metal film electrolytically deposited on the surface of10the hole; 4 - Electroactive carbon-containing composition.11

A distinctive feature of the voltammetric sensor proposed by us is the absence of 12 moving parts in the form of a piston pushing out the paste, constriction rings, gaskets, 13 which are present in the prototype [11]. This clearly indicates a simplification of the de-14sign. The mechanical strength of the electrode is provided by a reinforcing shrink tube, 15 which is also an insulating material. The presence of a hole for the carbon paste at the end 16 of the electrode with a volume of only 0.05 ml makes it possible to economically consume 17 the modified carbon-containing composite material, which is especially valuable when 18 choosing and optimizing the method of modifying the surface or volume of the carbon 19 paste electrode. At the same time, the electrical resistance of such an electrode is signifi-20 cantly less than that of others used in voltammetry, which makes it possible to broadly 21 the current range of the measuring device. These facts determine the ergonomics of the 22 proposed electrode. 23

The efficiency of the electrode and the possibility of its use in the analysis of inorganic and organic substances is illustrated by the following examples.

Example 1. Determination of a group of heavy metals by the inversion stripping voltammetry method from a carbon paste electrode modified with a mercury film.

The developed mercury-film graphite electrode was used to determine cadmium, lead and copper ions in environmental objects, beverages and food products using the additive method. Preparation for the analysis of samples was carried out in accordance with GOST 33824-2016 and GOST 31866-2012.

Table 1 shows some of the results of the analysis

31 32 33

24

25

26

27

28

29

30

8

6

Analyzed Object

Drinking water "Pulsar" beer 12% Apple juice Canned "Sardines in oil" Vegetable oil

Beans

Rye bread

Bread from flour (top

grade) Water of the

Zeravshan river Soil of municipality

Urgut Soil of village. "Geo-

physics" Soil of village "Geol-

ogy" Soil of village "Air-

port"

stripping voltammetry (n = 3; P = 0.95; Background 0.2 M HCl + 10^{-4} M Hg $^{+2}$, E _{accum.} -1.1 V, τ = 20 sec, sweep speed 50 mv / s).									
Found Me, mg/kg									
		Permissible			Permissible				
Cd	\mathbf{s}^{*}	Concentration,	Pb	\mathbf{s}^{*}	Concentration,	Cu	\mathbf{s}^{*}		
		mg/kg			mg/kg				
-	-	0.03	-	-	1	0.08	0,01		
0.002	0.001	0.03	0.006	0.001	1	0.41	0.007		
0.027	0.008	0.25	0.17	0.003	5	0.97	0.007		
0.11	0.012	1.5	0.15	0.008	10	6.94	0.032		
	ed 50 mv Cd 0.002 0.027	ed 50 mv / s). Cd s* 0.002 0.001 0.027 0.008	ed 50 mv / s). Found Me, Permissible Cd s* Concentration, mg/kg 0.03 0.002 0.001 0.03 0.027 0.008 0.25	ed 50 mv / s). Found Me, mg/kg Permissible Cd s* Concentration, Pb mg/kg 0.03 - 0.002 0.001 0.03 0.006 0.027 0.008 0.25 0.17	ed 50 mv / s). Found Me, mg/kg Permissible Cd s* Concentration, Pb s* mg/kg 0.03 0.002 0.001 0.03 0.006 0.001 0.027 0.008 0.25 0.17 0.003	ed 50 mv / s). Found Me, mg/kg Permissible Permissible Cd s* Concentration, Pb s* Concentration, mg/kg mg/kg 0.03 1 0.002 0.001 0.03 0.006 0.001 1 0.027 0.008 0.25 0.17 0.003 5	Found Me, mg/kg Found Me, mg/kg Permissible Permissible Concentration, Pb s* Concentration, Cu mg/kg - 0.03 - 1 0.08 0.002 0.001 0.03 0.006 0.001 1 0.41 0.027 0.008 0.25 0.17 0.003 5 0.97		

0.07

0.73

< 0.02

0.035

0.21

0.32

0.49

0.62

0.01

0.04

_

0.009

0.03

0.03

0.04

0.05

0.5

5

5

5

0.1

0.5

0.5

0.5

0.5

0.41

2.12

0.49

2.18

0.06

0.18

0.11

0.14

0.18

0.03

0.04

0.03

0.04

0.008

0.014

0.010

0.011

0.009

0.08

0.5

0.03

0.03

0.06

0,5

0,5

0,5

0.5

Table 1. The results of the determination of Cd, Pb, Cu in food, soil and natural waters by inversion 1

0.16 \mathbf{s}^* - the mean quadratic error.

0.11

0.002

traces

0.008

0.001

0.021

0.04

0.02

0.02

0.02

0.02

0.20

0.20

0,20

0.20

The detection limit for these heavy metals, as for most inversion stripping voltammetry methods, is $n \cdot 10^{-8} - n \cdot 10^{-9} \text{ mol/dm}^3$ [14]. With an increase in the accumulation time 6 and the scanning speed of the potential, the detection limit will decrease [15]. As can be 7 seen from the Table 1, only in a few cases there is an excess of permissible standards for 8 cadmium and lead, which is most likely due to anthropogenic impact on the environment 9 in these provinces. 10

Example 2. Making of an electrode made of carbon paste modified with a bismuth film.

The electrode is made similarly to the one described above, except that the coating of the surface of the well was carried out by applying a silver film by electrolysis [16].

Modification by bismut was carried out by ex-situ method from 0.001 m bismuth (III) nitrate solution in 0.2 M hydrochloric acid at -0.5 V relative to the silver chloride electrode for 5 minutes (300 sec.). The resulting electrode was washed three times with bidistilled water. In this case, the bi-modified electrode was coated with a dark matte film.

Figure 2 shows a voltammogram of a modified electrode in a solution containing cadmium and lead ions/

The results of the study are shown in Table 2.

The conducted studies have shown the fundamental possibility of using the pro-22 posed carbon-paste electrode, the surface of which is modified with a bismuth film, in the 23 analysis of real objects. 24

4 5

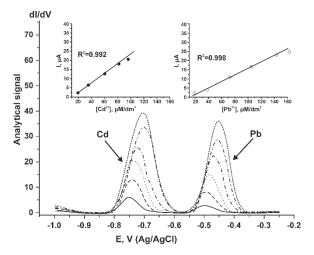
11

12

13

14

15


16

17

18

19

20

Figure 2. Voltammograms showing the dependence of the analytical signal on the increasing contents of Cd²⁺ and Pb²⁺ in model solutions with concentrations of 25, 50, 75, 100, 125 and 150 μ g / 3 dm³. Conditions: E elect.= -1.2 B; accumulation time 60 sec; potential sweep rate v = 50 mV / s. 4

Table 2. Evaluation of the accuracy of determining the concentration of Cd^{2+} and Pb^{2+} ions in 5model solutions.

Metal - Ion	Entered, µg/dm³	Found, µg/dm³
	25.0	21.3 ± 1.6
Cd	50.0	44.1 ± 1.4
	100.0	105.4 ± 5.2
	20.0	18.2 ± 1.8
Pb	40.0	36.1 ± 1.6
	80.0	86.8 ± 5.4

Example 3. Determination of vitamin B₂ using a carbon paste electrode modified by a bismuth film.

The same Bi-modified electrode was used to determine vitamin B₂ using the cyclic 9 voltammetry technique [17]. To confirm the practical application of the developed 10 method, a comparison was made of the correspondence of the experimental results obtained with the declared vitamin B₂ content given in the description of the pharmaceutical. 12 Three samples of vitamin B₂ were examined: 13

Sample A: Multivitamin syrup for children PIKOVIT ® , LLC "KRKA 14 PHARMA", containing 1 mg B₂ in 5 ml. 15

Sample B: Riboflavin-mononucleotide solution for injection 1% 1ml, Pharmstandard-Ufa Vita, Russia.

Sample C: Bentavit Valenta Pharmaceuticals JSC (Russia) in tablets of 100 mg vitamin B₂. 18

The control method was the fluorescent method for determining B2.

Table 3 shows the results of the determination of vitamin B₂ in these samples.

21 22

20

1

7

		voltammetric with Bi-modified electrode				fluorometric						
Probe	Indicated, mg	$\stackrel{-}{\mathcal{X}}$, mg	s	S r %	t [4,3]	R %	$\stackrel{-}{\mathcal{X}}$, mg	S	S r %	t [4,3]	R %	*F[19]
А	1	1.01 ± 0.08	0.247	6.0	0.85	101	0.98±0.02	0.145	2.1	1.12	98	2,.93
В	10	9.97 ± 0.18	0.384	1.48	0.89	99.7	9.94±0.15	0.348	1.22	0.85	99.4	1.21
С	100	99.40±0.86	0.833	0.7	1.45	99.4	99.96±1.42	1.07	1.14	0.06	100	1.64

Table 3. The results of the determination of vitamin B2 in the pharmaceutical products of a voltam-1metric with Bi-modified electrode and fluorometric methods*2

* s - the mean quadratic error; sr-relative error; t- Student 's criterion; F- Fischer's criterion; critical values at a significance level of 0.05 reference values are given in square brackets; R% - percentage of substance discovery in the analyzed sample.

As can be seen, both methods have shown reliable results for analytical parameters. The values of the relative standard deviation s for the mean value of the three measurements ranged from 0.247 to 0.833 when quantifying riboflavin using the proposed sensor and from 0.145 to 1.07 using the fluorescence method, demonstrating good accuracy of these methods.

Example 4. The use of a carbon paste electrode, volumetrically modified with manganese dioxide in the determination of riboflavin (vitamin B₂). In the work, methodological approaches and modes of voltammogram removal were used, indicated in [18].

The electrode was prepared as described above. Volumetric modification of the elec-14 trode with manganese dioxide was carried out by introducing 10% of the total mass of a 15 mixture of finely ground MnO₂ into a molten mixture of graphite powder and paraffin 16 [19]. Cyclic voltammograms were taken without mixing the solution at a potential scan 17 rate of 0.01 - 0.5 V/s. To do this, voltammograms of the background electrolyte with a 18 certain pH value were first taken. Then a standard sample with a known riboflavin con-19 tent or an analyzed sample was introduced into the electrochemical cell. Voltammograms 20 were recorded in the scanning range of potentials -0.5 - +0.5 V. Differential pulse voltam-21 metry with optimized parameters in the potential range from -0.5 V to +0.3 V was used 22 for quantitative evaluation. 23

Figures 3 and 4 show cyclic and differential pulse voltammograms in the presence of 24 increasing amounts of vitamin B₂ 25

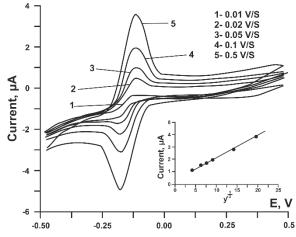


Figure 3. Cyclic voltammograms of 0.1 mM riboflavin in a Britton-Robins buffer solution with pH 227on a carbon-containing electrode modified with manganese dioxide at different scanning speeds.28Inset: dependence of the magnitude of the peak current of oxidation of vitamin B2 as a function of29 $v^{1/2}$ 30

3

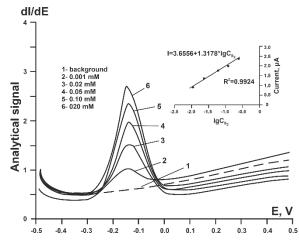
4

5

6

7

8


9

10

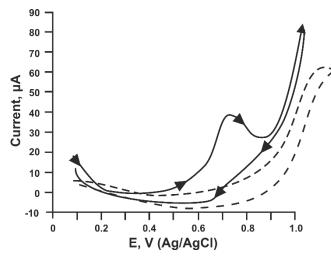
11

12

13

Figure 4. Differential-pulse voltammograms of vitamin B₂ of various concentrations on a carboncontaining electrode modified with manganese dioxide. Conditions: background electrolyte - Britton-Robins buffer with pH 2; differential pulse mode, potential sweep speed of 100 mV/s. Inset: dependence of the analytical signal I, μ A on the logarithm of the concentration of vitamin B₂, mmol/L 6

Example 5. Determination of hydrogen peroxide using a carbon paste electrode volumetrically modified with manganese dioxide nanoparticles.


The paper [20] describes the process of synthesis of manganese dioxide nanoparticles and their modification of the volume of coal paste. The reaction was used as precursors for the production of MnO₂ nanoparticles

 $3MnCl_2 + 2KMnO_4 + 2H_2O = 5MnO_2 + 2KCl + 4HCl$

The proof of successful modification was microscopic and X-ray dispersion studies, which showed the production of MnO₂ nanoparticles with sizes of 20-55 nm.

Its electrochemical behavior in the presence of hydrogen peroxide was studied on a manufactured MnO₂/C composite electrode. Cyclic voltammograms were taken in the range of -0.1 - +1.0 V in buffer solutions with different pH at different potential scanning speeds.

The results of the experiment are illustrated in Figures 5 and 6, which show cyclic 19 voltammograms on a MnO₂/C composite electrode and testing of this electrode in the amperometric mode for determining hydrogen peroxide [21]. 21

22

Figure 5. Cyclic voltammograms on a MnO_2 / C composite electrode in a background solution (0.2523M phosphate buffer with a pH of 7,0) are a dashed curve in a 0.5 mM hydrogen peroxide solution.24Scanning speed 50 mV / s.25

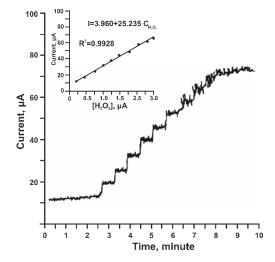
1

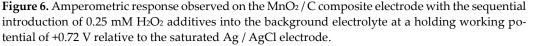
7

8

9

10


11


12

13

References

1.

The linear response of the electrode signal is observed in the range of concentrations of hydrogen peroxide 0.1 - 3.0 mM. The detection limit calculated by the 3σ method, taking into account the slope of the graph, is 0.03 mM.

Thus, the examples given prove the operability of the proposed electrode for the determination of inorganic and organic substances in a wide range of detectable contents using various voltammetry techniques. At the same time, the electrode has a simple design, is reliable in operation and economical when using modifying agents.

3. Conclusions

A carbon-paste electrode of ergonomic design has been developed for conducting 13 voltammetric measurements. The characteristic features of the manufactured electrode is 14 that its body is made of a graphite rod of spectral purity and is covered with an insulating 15 shell made of a shrink tube. At the end of the rod there is a cavity of a hemispherical or 16 conical shape, the surface of which is electrolytically coated with a copper or silver film 17 that improves the conductive properties of the electrode and the adhesion of the electro-18 active carbon-containing paste filling it with the electrode body. 19

The positive effect is achieved by simplifying the design of the electrode, improving 20 mechanical strength, extending service life, the possibility of volumetric and surface mod-21 ification with economical consumption of reagents-modifiers. 22

The electrode has been tested in various versions of voltammetry to determine a 23 number of substances of inorganic and organic origin, which have shown that the metro-24 logical parameters of measurements in sensitivity and reproducibility of results are not 25 inferior to those described in the literature, or are in agreement with it. 26

	Institutional Review Board Statement: Not applicable.	27			
	Informed Consent Statement: Not applicable.	28			
	Conflicts of Interest: Authors declare that there are no conflicts of interest.	29			
erences		30			
Budnikov, G.K., Evtyugin, G.A., Maystrenko, V.N. <i>Modified electrodes for voltammetry in chemistry, biology and medicine</i> . M.: Bi- nom. Laboratoriya znaniy, 2012 ; 416 p. [in Russian].					

- 2. Electroanalytical methods. Theory and Practice / ed. F. Scholz.- M.: Binom. Laboratoriya znaniy, 2006. - 326 p. [in Russian]. 33
- 3. Isakova, D. T., Aronbaev S. D., Aronbaev D. M. Modified carbon-containing electrodes in electroanalysis: past, present and future. Austrian Journal of Technical and Natural Sciences 2022, #7-8 https://doi.org/10.29013/AJT-22-7.8-36-41

12

34

35

1

2

3

4

5

6

7

8

9

10

- Švancara, I., Vytřas, K., Barek, J., Zima, J. Carbon Paste Electrodes in Modern Electroanalysis. *Analytical Chemistry*. 2001, *Volum* 31, *Issue* 4, pp.311-345. / https://doi.org/10.1080/20014091076785
- 5. Budnikov, G.K., Maystrenko, V.N., Murinov, Yu.I. *Voltammetry with modified ultramicroelectrodes*. M.: Nauka, **1994**; 239 p. [in Russian].
- 6. Nechepasova, D. I. Classification of fat oils. *Int. J. Experimental Education.* **2014**, № 1-2, pp. 82-183 [in Russian].
- 7. Budnikov, G.K. *Fundamentals of modern electrochemical analysis*. M.: Mir. Binom. Laboratoriya znanii. **2003**; 592 p. [in Russian].
- Yang, Z.; Zhang, X.; Guo, J. Functionalized Carbon-Based Electrochemical Sensors for Food and Alcoholic Beverage Safety. Appl. Sci. 2022, 12,9082. <u>https://doi.org/</u>10.3390/app12189082
- 9. Aronbayev, D. M., Aronbayev, S. D., Normative, G. Z., Isakova, D. T. Indicator carbon-paste electrode for voltammetric analysis. *Industrial laboratory. Diagnostics of materials* 2020, №2(86), pp.:5-14. https://doi.org/10.26896/1028-6861-2020-86-2-5-14
- 10. Patent of Uzbekistan No FAP 01505 Electrode for voltammetric analysis / D.M. Aronbaev, S.D. Aronbaev, et.al. G01N 27/48. Publ.06.30.2022. *Foydali modellar. Rasmiy abborotnoma*, **2020**, № 6, p.86. [in Russian].
- 11. Patent USSR No. 1315884 Coal-paste electrode for voltammetric analysis / A.M. Troshenkov, A.I. Kamenev. G01N 27/48. Publ.07.06.1987. Bull. 21. [in Russian].
- Aronbaev, D., Aronbaev, S., Nasimov, A., Narmaeva, G. Making And Evaluation Of Preparedness Of Solid Mercury-Graphite Electrodes For The Stripping Voltammetric Determination Of Trace Concentrations Of Heavy Metals International *Journal of Scientific & Technology Research* IJSTR 2020, Volume 9, Issue 6, June, pp.416-420.
- 13. Aronbaev, S.D., Nasimov, A.M., Aronbaev, D.M. Nasyirov, R.H. Computerized analytical complex for inversion voltammetry based on the universal polarograph PU-1. *Ilmiy tadkikotlar ahborotnomasi SamDU (Vestnik SamGU)*, **2009**, No 1(53), pp. 47-50. [in Russian].
- 14. Dedkova, D.A., Lukashov, S.V. Investigation of parameters of voltammetric determination of heavy metals in aqueous solutions. *International Journal of Applied and Fundamental Research*, **2021**, No. 12, pp. 82-87; URL: https://applied-research.ru/ru/arti-cle/view?id=13335. [in Russian].
- 15. Fan Yang, Peng Liu, Ting ting Hao, et al. Fast-scan anode Inversion Voltammetry for Pb(Ii) detection at the Picomolar Level. *Electrochemistry*, **2019**, Volume 55, No. 3, pp. 358-365 [in Russian].
- Aronbaev, S.D., Narmaeva, G.Z., Aronbaev ,D.M. Bismuth modified carbon-containing electrodes for voltammetric analysis. *Universum: Himiya i biologiya*: elektron. nauchn. zhurn. 2018, No 5(45). URL: http://7universum.com/ ru/nature/archive/item/ 5181. [in Russian].
- Aronbaev ,S.D., Narmaeva, G.Z., Aronbaev, D.M. Study of the behavior of a carbon-graphite electrode modified with a bismuth film in the voltammetric determination of vitamin B2 . *Universum: Himiya i biologiya*: elektron. nauchn. zhurn. 2019, No 3(57). URL: <u>http://7universum.com/ru/nature/archive/item/6974</u> [in Russian].
- 18. Mehmeti, E., Stankovi , D., ,Chaiyo, S., Švorc, L., Kalcher K. Manganese dioxide-modified carbon paste electrode for voltammetric determination of riboflavin.Microchim Acta 2016 Volum 183, pp.1619–1624.
- 19. Aronbaev, S.D., Narmaeva, G.Z., Aronbaev, D.M. Application of a composite MnO₂. C electrode for voltampometric determination ribooflavin in pharmaceutical preparations. *Avitsenna* **2019**, No 41, pp. 4-9.
- Aronbaev, D.M., Aronbaev, S.D., Narmaev, a G.Z., Isakova, D.T, Synthesis and study of the nanocomposite MnO₂/C. *The Austrian Journal of Technical and Natural Sciences*, 2020, No1-2, pp.40-46.
 36
- Aronbaev, D., Aronbaev, S., Narmaeva, G., et.al, Electrode on the Basis of Spectral Coal Modified by Nanoparticles of Manganese Dioxide and its Application for Determination of Hydrogen Peroxide international. *Journal of Innovative Research in Science*, *Bergineering and Technology* (IJIRSET)-2020 Volume 9, October 2020 P.9802 -9811.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34