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Abstract: This review explores the progress and significance of textile roofing solutions in with-

standing challenging weather conditions. Specially treated fabrics are designed to withstand a va-

riety of climatic challenges, including heavy rainfall, extreme heat, and strong winds. The focus is 

on the application of these innovative roofing systems in various environments to enhance comfort 

and safety for individuals exposed to harsh weather. Additionally, it investigates the use of durable 

and weather-resistant materials and discusses the technological advancements in the design and 

manufacturing of these advanced textile products. The review provides insights into the continuous 

evolution of textile roofing technologies, improving shelter and protection in extreme climates. It 

also explores areas of innovation in textile roofing, encompassing the adoption of textile mem-

branes, the incorporation of fibers and textiles into roof constructions, the latest advancements in 

textile materials, a wide range of roofing applications, and provides an overview of companies of-

fering materials and technologies for textile roofing solutions. 
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1. Introduction 

Textile roofing solutions have proven to be a promising innovation, providing pro-

tection and safety for people and withstanding difficult climatic conditions [1-2]. Specially 

treated textiles and fabrics are increasingly being used to meet the challenges posed by 

heavy rainfall, extreme heat or high winds in different climatic environments [3-4]. The 

requirements for textile roofs are many and varied. They must have exceptional weather 

resistance to protect against rain, hail, snow and UV radiation. In addition, high tensile 

strength and durability are essential to withstand wind forces and any potential mechan-

ical loads. Excellent thermal insulation is also critical to maintaining a comfortable indoor 

environment, especially in regions with extreme temperatures. The materials used should 

also be fire resistant and non-combustible to ensure safety. They should also be light-

weight so that they reduce structural loads while still being capable of handling snow. 

UV stability is critical to prevent material degradation over time. In addition to these tech-

nical considerations, aesthetic aspects can be important, as textile roofs can contribute to 

the overall architectural design and visual appeal of a structure. Textile roofing solutions 

need to balance these requirements and demonstrate a fusion of functionality, durability, 

safety and aesthetic coherence, all while adapting to different climatic challenges. 

While many scientific papers have examined the effects of green roofs, there are a 

limited number of resources that address textile membrane roofs and the materials used. 
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The available literature on this specific topic is relatively scarce. This suggests that further 

research is needed to improve the understanding of textile membrane roofs and their ma-

terial properties. This review will focus on recent advances in the application and devel-

opment of textile roofing solutions and will provide an overview of applications already 

available in the marketplace. 

2. Textile Membranes  

The indoor environment and energy dynamics of buildings are greatly influenced by 

the optical characteristics of the textile membrane material used in roofing. These mem-

brane materials must meet several challenges, such as managing heat transfer both from 

the environment into the building and vice versa, including radiation and convection due 

to solar radiation and external weather conditions. Heat conduction within the membrane 

itself can be neglected. Typically, the scientific literature provides limited coverage of tex-

tile membrane constructions, with the majority of literature reviews focusing on office 

buildings, green roofs, or the materials used [5-8]. When the term "membranes" is used, it 

refers to textile membranes with fibers and fabrics, excluding foils [9].  

Although a few buildings with multi-layer membrane roofs have been constructed 

in recent years, there is a lack of publicly available information about them. The study by 

Gürlich et al. investigates the use of daylight in buildings to improve visual comfort and 

energy efficiency. A special textile membrane was used as a roof to harness daylight and 

reduce heating requirements. The results show that this roof construction can reduce the 

electricity required for lighting by 30% and provides valuable insights for similar building 

designs in the future [10]. The study by Reimann et al. developed a simulation model for 

multi-layer membrane roofs. Its purpose is to quickly estimate the annual energy demand 

of a membrane-based building under realistic weather scenarios [11]. Membrane materi-

als vary and can be changed to meet design requirements [12]. They have different phys-

ical and aesthetic properties for reuse [13]. Composed of different materials and layers, 

textile membranes offer different weights, densities, and strengths as needed. After their 

use as a roofing material, textile membranes need to be recycled, with several considera-

tions [14-16]. Morandi and Monticelli demonstrate a method for recycling textile mem-

branes for subsequent acoustic applications in buildings [17]. These properties have a sig-

nificant impact on acoustic performance, particularly sound absorption. A higher sound 

absorption index improves reverberation time reduction. Material density and porosity 

determine the sound absorption coefficient. The construction sector contributes signifi-

cantly to the energy and material consumption throughout the life cycle of a building. In 

their study, Antolinc and Eleršič Filipič explore the use of industrial nonwoven textile 

waste for the production of thermal and acoustic panels. They convert polyester nonwo-

ven textiles, obtained as strips and bales from the production line, into compact thermal 

insulation boards by shredding them into smaller segments and then compressing them 

using a hot press [18]. 

3. Use of Fibres and Textiles in Roof Constructions 

Textile roofing solutions are used in a wide range of environments exposed to ex-

treme weather conditions and some developments in this field are explained in some stud-

ies where fibers and textiles are applied [19-20]. A few specifically discuss the use of fibers 

and textiles in building construction. Orlowsky et al. conducted a study on textile-rein-

forced concrete in construction and building maintenance [21]. The study conducted by 

Ngo and Nguyen included experimental and numerical analyses of bolted joints in thin-

walled textile-reinforced concrete (TRC) panels. The research investigated the perfor-

mance of connections in TRC structures and identified the potential of the open box panel 

design for applications in walls, floors, and roofs [22]. Exploring the concept of function-

integrated design, Su et al. introduced a novel sandwich roof panel made of basalt fiber-

reinforced plastic (BFRP) material. The study involves a comprehensive approach that 
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includes experiments, theoretical investigations, and numerical analyses to evaluate the 

thermal properties of these innovative roof panels [23]. In the work of Islam et al. a com-

parative analysis was performed to investigate carbon fiber and galvanized iron textile 

reinforced concrete [24]. The research by Nivetha et al. provided an overview of the vari-

ous properties of textile-reinforced concrete [25]. 

4. Current Textile Material Developments 

The selection of appropriate materials and manufacturing technologies is key to the 

success of textile roofing solutions. Specially treated textile fibers and fabrics offer high 

weather resistance and robustness. These materials undergo a sophisticated process that 

increases their resistance to extreme weather conditions [26]. In addition, technological 

advances in the textile industry allow the development of high-quality materials with im-

proved properties such as UV stability, wind load, flexibility, color fastness, and fire safety 

[27-30]. A roof waterproofing system that combines a water-based polymer membrane 

with infrared reflective additives to ensure thermal reflectivity is reported in the study by 

Ferreira et al. A smart textile substrate reinforces the membrane and contains moisture 

and temperature sensors. Tests confirm the high solar reflectivity of the membrane, the 

robustness of the textile substrate and the successful integration of the sensors. The devel-

oped solution shows potential for roof optimization in different climates and is competi-

tive in climate change and adaptation solutions, especially in sunny areas [31].  

Liu et al. analyze the application and suitability of energy efficiency measures (EEMs) 

and renewable energy technologies (RETs) in near-zero energy buildings (NZEBs) in 

China. The study focuses on minimizing energy demand through EEMs such as efficient 

insulation and windows, and introducing RETs such as solar PV/T, air and ground [32] 

Quiao et al. explored a novel heat resistant structural system incorporating a cementitious 

honeycomb composite (HSCC) for efficient heat dissipation. The active heat dissipation 

enabled by the HSCC outperformed passive insulation in improving thermal resistance 

under pressure. The study used microscopic thermal imaging and finite element simula-

tion to analyze the heat transfer processes of the 3D-printed microscaffold-based HSCC. 

With a conductivity of 0.24 W/mK, the proposed material showed a 30% improvement in 

thermal resistance compared to lightweight concrete. The innovative support system com-

bined ventilation through the HSCC with its low thermal conductivity, resulting in loss 

of a thermal capacity at 1300°C that was much lower than that of conventional concrete 

walls [33]. Hussein et al. focus on improving the seam quality and peel strength of multi-

layer hybrid textiles through continuous ultrasonic welding, demonstrating its ad-

vantages for weatherproofing applications and promoting bonding techniques [34]. Li 

and Zanelli present a comprehensive review of textile-envelope integrated flexible photo-

voltaic (TE-FPV) systems, covering both their fabrication processes and the wide range of 

applications they encompass. [35]. The study by Parankar et al. presents a technique for 

the preparation of chitosan-based finishes that impart flame-retardant, UV-protective, 

and antibacterial properties to cotton fabrics. The method involves the synthesis of nitro-

gen- and phosphorus-rich green multifunctional chemicals to achieve these functional en-

hancements in the cotton fabrics [36]. The thermal analysis of enclosed domes with dou-

ble-layer PTFE fabric roofs integrated with aerogel-glass wool insulation mats is discussed 

by Yin et al. The study includes on-site testing of the thermal environment in a sports 

dome with this roof configuration [37]. Hu et al. investigate the long-term thermal perfor-

mance of enclosed, large-span swimming stadiums with retractable membrane roofs. The 

study focuses on aspects such as structural behavior, serviceability, and energy require-

ments that collectively influence the performance of the building [38]. 

5. Textile Roofing Applications 

Textile roofing solutions are used in a wide range of environments [39-42]. From ur-

ban environments with heavy rainfall and thunderstorms to desert regions with searing 
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heat and sandstorms, these textile roofs must provide effective protection. Their adapta-

bility is especially valuable in areas with seasonal climate fluctuations, such as deserts that 

experience cold and stormy conditions in winter. Notable research efforts have addressed 

this issue. For example, Zhu and Feng's study highlights advances in textile materials for 

personal radiant heat management in both indoor and outdoor environments [43]. Sproul 

et al. conducted an economic comparison of white, green, and black flat roofs and con-

cluded that white roofs have a 3-fold advantage over green roofs in terms of mitigating 

global warming [44]. Given that humans spend approximately 90% of their time indoors, 

it is increasingly important to consider the environmental impact of daily indoor activi-

ties, including homes, workplaces, and commercial spaces [45].  

As the demand for effective roofing solutions grows, several companies have already 

introduced their offerings to the market. Table 1 provides an overview of the various ap-

plications in which textile roofing solutions have been implemented. The variety of envi-

ronments in which these textile solutions are being used demonstrates their versatility 

and potential.   

Table 1. An overview of the companies offering materials and technologies for textile roofing solu-

tions. 

Companies Materials and Technologies 
Refer-

ences 

Geiger Engineers 

Enduring structural fabric and membrane materials encom-

pass TEFLON™ coated fiberglass® and other types of 

membranes. 

[46]  

Birdair Inc.  

Tensotherm™ composite consists of a thin, translucent 

membrane integrated into aerogel, which is enclosed be-

tween an outer skin made of PTFE or PVC-coated factory 

membrane and a thinner, lighter inner layer serving as an 

acoustic or vapor barrier (U.S. Patent No. 8,899,0009). 

[47-48]  

Vector Folitec 

GmbH 

The Texlon®  system employs pneumatically stabilized film 

components that are fused through welding. Typically, 

these components consist of either two or five layers of 

ETFE film (ethylene tetrafluoroethylene). The thickness of 

the ETFE film ranges from 80 μm to 300 μm, based on the 

structural needs of the building. 

[49] 

Serge Ferrari 

Group 

Flexlight Xtrem TX30-II utilizes crosslink technology to cre-

ate a high-performance membrane. During the production 

process, the polyester microcable is stretched bidirectionally 

while being coated. 

[50] 

Temme Ober-

meier GmbH 

Tailored materials and customized membrane configura-

tions encompass PES/PVC, ETFE, PTFE, Silicone/Glass, and 

Low-E coatings. 

[51] 

3dtex GmbH 

3d-IsoSkin represents a multi-layered system containing in-

sulating material, wherein various fabric layers can be inte-

grated in combination. 

[52]  

 

6. Conclusions and Future Outlook 

Textile roofing solutions face challenges that must be overcome to ensure optimal 

performance. The need to withstand extreme weather conditions requires continuous re-

search and development to further improve the performance of textile roofing systems. 

Further research into the durability and longevity of textile materials during prolonged 

exposure to harsh climatic conditions is critical. In addition, the integration of smart and 
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responsive textiles that can adapt to changing weather patterns holds great promise. Col-

laboration between architects, engineers and material scientists is likely to lead to more 

innovative and effective solutions for textile roofing. The use of specially treated fabrics 

combined with advanced manufacturing technologies has greatly improved the durabil-

ity and performance of textile roofing systems in extreme climates. Despite these ad-

vances, there are still challenges to be overcome in the field of textile roofing, such as pro-

tecting the environment and improving the sustainability of textile roofing solutions.  Fu-

ture research and development in this area is needed to further improve the efficiency and 

functionality of textile roofing solutions to increase protection and safety in harsh weather 

conditions. 
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