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Abstract: In this paper, we investiage a fractional-order predator-prey model incorporating prey
harvesting. In a non-delayed model, the functional response of Crowley-Martin has been studied.
We first prove the existence, uniqueness, non-negativity and boundedness of the solutions for the
proposed model. Furthermore, analyze the existence of various equilibrium points to examine the
local asymptotically stable properties, and use the suitable Lyapunov function to study the globally
asymptotic stability. Finally, some numerical simulations are verified for the analytic results.
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1. Introduction

Fractional Calculus (FC) is a general field that attempts to understand real-world phe-
nomena.A non-integer sequence is modeled with derivatives and is a field of differentiation
and integrations are performed with non-integer order derivatives. The memory impact
and conserved relevant physical properties are the benefits of fractional derivatives.The
predator prey models developed by Lotka and Voltera are considered early developments
in contemporary mathematical eology in coupled system of non-linear differential equa-
tions [1,2]. Since Kermack-Mckendrick’s pioneering work on SIRS, epidemiological models
have attarcted much interest from researchers [3]. In general, there are two main types
of mathematical models: ecological and epidemiological models. The relations between
populations of a certain community are explored in ecological models [4]. Epidemiology
models are studies of how illnesses spread between humans and animals. This article’s
major objective is to investigate how infection affects prey during prey harvesting in a
predator-prey system. Here, we examined the local and global stabilities of the equilibrium
points of this system, as well as the boundedness and positivity of the solution [5,6]. An
eco-epidemiological predator-prey system with disease affecting only prey species and
harvesting of both susceptible and infected prey has been taken into consideration by Bhat-
tacharya et al. [7,8]. Agnihotri and Gakkhar studied a prey-predator system with disease
affecting both species and only the prey species being harvested [9,10]. The SIRS-type
models are mathematically similar to models of the s-called geometric Brownian motion
(GBM): both predict an exponential growth, of infected individuals or of the value of the
process. The state of dead individuals in the SIRS models is akin to the so-called resetting
in the GBM model [11,12]. The very relevant model of GBM with resetting was considered
recently in refs.Ecologists, economists, and those involved in natural resource management
have been interested in the studies on harvesting in predator-prey systems for some time.
Few people have specifically included a harvested parameter in a predator-prey-parasite
model and analysed the system’s response to it [13]. In this article, we examine the function
of harvesting in an eco-epidemiological system where susceptible and diseased prey are
harvested together [14,15]. This study applies the Caputo fractional derivative and the
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harvesting rate to the predator-prey model. This author’s major objective is to investigate
the effects of prey infection and prey harvesting in a predator-prey system. Here, we exam-
ined the boundedness, positivity, local and global stabilities, and stability of the system’s
equilibrium points.

2. Model Formulation

The model explains how the diseased prey system interact with harvesting, which
results in the following set of equations. The dynamical prey and predator mathematical
model was investigated using the proposed model,

dL
dT

= r1L(1− L + M
K

)− λML− α1LN
(1 + ζL)(1 + ηN)

− H1E1L,

dM
dT

= λML− d1M− b1MN
a1 + M

− H2E2M,

dN
dT

= −d2M +
cb1MN
a1 + M

+
cα1LN

(1 + ζL)(1 + ηN)
.


(1)

Table 1. Biological representation of the system (1) parameters.

Parameters Biological Representation

L Susceptible Prey
M Infected Prey
N Predator
r1 Intrinssic Prey growth rate
K Carrying capacity of the environment
α1 Predation rate of Susceptible Prey
b1 Predation rate of Infected Prey
a1 Half-saturation constant

c Conversion coefficient from the prey to
predator

d1 Infected Prey death rate
d2 Predator Population death rate
λ Infection Rate

The variables l = L
K , m = M

K , n = N
K and the dimension time t = λKT can be changed

in order to reduce the number of parameters in the system (1). We apply the following
transformations

s1 =
r1

λk
, s2 =

α1

λK
, s3 =

a1

k
, s4 =

α1

λK
, s5 =

b1

λk
, s6 =

d2

λk
.

According to the above transformations the Equation (1) can be rewritten in the following
non-dimensional form

dl
dt

= s1l(1− l −m)− lm− s2ln
(1 + ζl)(1 + ηn)

− θ1l,

dm
dt

= lm− s4m −
s5mn

s3 + m
− θ2m,

dn
dt

= −s6n +
cs5mn
s3 + m

+
cs2ln

(1 + ζl)(1 + ηn)
.


(2)

In the system,we have taken fractional-order derivative α to model (2) with restore the
fractional-order Caputo derivative. Then, the model (2) is take into the following form



Eng. Proc. 2023, 52, 0 3 of 8

dαl
dtα

= s1l(1− l −m)− lm− s2ln
(1 + ζl)(1 + ηn)

− θ1l,

dαm
dtα

= lm− s4m− s5mn
s3 + m

− θ2m,

dαn
dtα

= −s6n +
cs5mn
s3 + m

+
cs2ln

(1 + ζl)(1 + ηn)
.


(3)

subject to the initial conditions l(0) ≥ 0, m(0) ≥ 0, n(0) ≥ 0.

3. Existence and Uniqueness of the Solutions

In this Section, boundedness of solution of the system (3) has been examined. The
fractional-order system as follows:

dαX(t)
dtα = f (t, X(t)), α ∈ (0, 1].

Theorem 1. The fractional order system (3) has a unique solution, for the non-negative initial
conditions.

Proof. A sufficient condition for the solutions of system (3) in the region χ× (0, T] where,

χ =
{
(l, m, n) ∈ R3 : max(|l|, |m|, |n|) ≤ η

}
.

Now, let us define a mapping V(X) = (V1(X), V2(X), V3(X)) where

V1(X) = s1l(1− l −m)− lm− s2ln
(1 + ζl)(1 + ηn)

− θ1l,

V2(X) = lm− s4m− s5mn
s3 + m

− θ2m,

V3(X) = −s6n +
cs5mn
s3 + m

+
cs2ln

(1 + ζl)(1 + ηn)
.

||V(X)−V(X̄)|| = |V1(X)−V1(X̄)|+ |V2(X)−V2(X̄)|+ |V3(X)−V3(X̄)|

= |s1l(1− l −m)− lm− s2ln
(1 + ζl)(1 + ηn)

− θ1l − s1 l̄(1− l̄ − m̄) + l̄m̄

+
s2 l̄m̄

(1 + ζ l̄)(1 + ηn̄)
+ θ1 l̄|+ |lm− s4m− s5mn

s3 + m
− θ2m− l̄m̄ + s4m̄

+
s5m̄n̄

s3 + m̄
+ θ2m̄|+ | − s6n +

cs5mn
s3 + m

+
cs2ln

(1 + ζl)(1 + ηn)
+ s6n̄− cs5m̄n̄

s3 + m̄

− cs2 l̄n̄
(1 + ζ l̄)(1 + ηn̄)

|

≤ {s1 + 2s1η + (2 + s1η) + (1 + c)ηs2s3 + θ1}
∣∣l − l̄

∣∣
+ {s1η + (1 + c)s5η + s4 + θ2}|m− m̄|

+
{
(1 + c)s2s3η + (1 + c)s2s3η2 + (1 + c)s5η + s6

}
|n− n̄|

≤ H‖X− X̄‖.

where, H = max
{

s1 + 2s1η + (2 + s1)η +
(1 + c)s2s3η

(s2 + η)2 + θ1, (s1 + s5 + cs5)η + s4 + θ2 ,

(1 + c)s2s3η

(s3 + η)2 +
(1 + c)s2s3η2

(s3 + η)2 + (1 + c)s5η + s6

}
. Hence, the solution of the system (3)

exist and unique.
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4. Equilibrium Points and Stability Analysis

In this section, the system (3) have the following possible equilibrium points:

(i) E0(0, 0, 0) is the trivial equilibirum point.

(ii) E1

(
s1 − θ1

s1
, 0, 0

)
is the boundary equilibrium point.

(iii) E2(l̄, 0, n̄) is the infected prey free equilibrium point, where l̄ =
s6(1 + ηn)

cs2 − s6ζ(1 + ηn)
,

and n̄ =
s1(1− l)(1 + ζl)

s2 + θ1 − ηs1(1− l)(1 + ζl)
.

(iv) E3(l̂, m̂, 0) is the predator free equilibrium point, where l̂ = s4 + θ2 and

m̂ =
s1(1− s4 − θ2)− θ1

s1 + 1
.

(v) The interior equilibrium point E∗(l∗, m∗, n∗). Where,

m∗ =
s3(s3s6 + (s6 − cs2)l∗)

(cs2l∗ + (cs5 − s6)(1 + ζl∗)
, n∗ =

s3c(l∗ + s4 − θ2)(1 + ζl∗)
(cs2l∗ + (cs5 − s6)((1 + ηn∗)

ans l∗ is the unique positive root of the quadratic equation Al2 + Bm + C = 0, Where
A = s1(cs2 + cs5 − s6), B = (cs5 − s6)(θ1 − s1 + s3s1) + s3c(θ1 − s1) + s3(s6 + (s6 −
cs1)s1), C = −s3((s1 − θ1)(cs5 − s6) + (cs2(s4 + θ2)− s3s4(1 + s1)). Now, we want
to calculate Jacobian matrix for local stability analysis around different equilibrium
points.The Jacobian matrix at an arbitrary point (l, m, n) is given by

J(l, m, n) =

 n11 n12 n13
n21 n22 n23
n31 n32 n33

.

where, n11 = s1(1 − 2l) − m(s1 + 1) − s2n
(1 + ζl)2(1 + ηn)

− θ1, n12 = −l(s1 + 1),

n13 = − s2l
(1 + ζl)(1 + ηn)2 , n21 = m, n22 = l − s4 − θ2 −

s3s5n
(s3 + m)2 , n23 =

s5m
s3 + m

,

n31 =
cs2n

(1 + ζl)2(1 + ηn)
, n32 =

s3cs5n
(s3 + m)2 , n33 = −s6 +

cs5m
s3 + m

+
s2cl

(1 + ζl)(1 + ηn)2 .

Theorem 2. The trivial equilibrium point E0(0, 0, 0) of a system (3) is stable if s1 < θ1, otherwise
it is unstable.

Proof. The Jacobian matrix of the system (3) at an equilibrium point E0 is given by

J(E0) =

 s1 − θ1 0 0
0 −s4 − θ2 0
0 0 −s6

.

The eigenvalues are λ1 = s1 − θ1, λ2 = −s4 − θ2 and λ3 = −s6. Hence, the trivial
equilibrium point E0(0, 0, 0) is a stable if s1 < θ1, otherwise it is unstable.

Theorem 3. The infected free and predator free equilibrium point E1(
s1 − θ1

s1
, 0, 0) of a system (3)

is stable if cs2(s1 − θ1) < s6(s1 + ζ(s1 − θ1)).

Proof. The Jacobian matrix of the system (3) at an equilibrium point E1 is given by
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J(E1) =


θ1 − s1 −

(
s1 − h1

s1

)
(s1 + 1)

−s2(s1 − θ1)

s1s3 + (s1 − θ1)

0 1− s4 − θ2 −
θ1

s1
0

0 0
−s2(s1 − θ1)

s1s3 + (s1 − θ1)− s6

.

The eigenvalues are λ1 = θ1 − s1, λ2 = 1− s4 − θ2 −
θ1

s1
and λ3 =

−s2(s1 − θ1)

s1s3 + (s1 − θ1)− s6
.

Hence, the infected prey and predator free equilibrium point E1 is stable.

Theorem 4. The disease free equilibrium point E2 of a system (3) is locally asymptotically stable if

min
{

s3s6

c− s6
− s4, s1

(
1− 2s3s6

c− s6

)}
< θ1.

Proof. J(E2) =

 d11 d12 d13
d21 d22 d23
d31 d32 d33

. where d11 = −θ1 + s1 −
2s3s1s6

cs2 − s6
− (cs2 − s6)

2n̄
s3s2c2 ,

d12 = − s3(1 + s1)s6

c− s6
, d13 = − s6

c
, d21 = 0, d22 = −s4 − θ2 +

s3s6

cs2 − s6
, d23 = 0,

d31 =
((cs2 − s6)

2n̄)
s3cs2

, d32 =
cs5n̄

s3
, d33 = 0. Here, the characteristic equation of the above

Jacobian matrix is

λ3 + Pλ2 + Qλ + R = 0. (4)

where, P = −p11 − p22, Q = −p31 p13 + p22 p11, R = p13 p12 p31. According to Routh-
Hurwitz criteria [16], P > 0, R > 0 and PQ− R > 0. Hence, E2 is locally asymptotically
stable.

Theorem 5. The equilibrium point E3 of a system (3) is locally asymptotically stable if s6 >
c(s2 + s5).

Proof. The Jacobian matrix at E3 is given by

J(E3) =

 m11 m12 m13
m21 m22 m23
m31 m32 m33

.

where m11 = −(s4 + θ2)s1, m12 = (−1 − s1)l̄, m13 =
−s2

(1 + ζl)2)(1 + ηn)
, m21 = m,

m22 = 0, m23 = s5m̄
s3+m̄ , m31 = 0, m32 = 0, m33 = cs2 l̄

(1+ζl)(1+ηn)2 − s6 +
cs5m̄
s3+m . Here, the

characteristic equation of the above Jacobian matrix is

λ3 + Eλ2 + Fλ + G = 0. (5)

where, E = −m11 −m33, F = −m21m12 + m33m11, G = m12m21m33. According to Routh-
Hurwitz criteria [16], E > 0, G > 0 and EF− G > 0. Hence, E3 is locally asymptotically
stable.
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Theorem 6. The endemic equilibrium point E∗ of system (3) is locally asymptotically stable .

Proof. The Jacobian matrix at E∗ is given by

J(E∗) =

 g11 g12 g13
g21 g22 g23
g31 g32 g33

.

where, g11 = s1(1 − 2l∗) − m(s1 + 1) − s2n
(1+ζl∗)2(1+ηn∗) − θ1, g12 = −l∗(s1 + 1),

g13 = − s2l∗
(1+ζl∗)(1+ηn∗)2 , g21 = m∗, g22 = l∗ − s4 − θ2 − s3s5n∗

(s3+m∗)2 , g23 =
s5m∗

s3 + m∗
,

g31 =
cs2n∗

(1 + ζl∗)2(1 + ηn∗)
, g32 =

s3cs5n∗

(s3 + m∗)2 , g33 = −s6 +
cs5m∗

s3 + m∗
+

s2cl∗

(1 + ζl∗)(1 + ηn∗)2 .

Here, the characteristic equation of the above Jacobian matrix is

λ3 + Eλ2 + Fλ + G = 0. (6)

where E = −g11− g33, F = g21g12 + g22g11− g13g31 + g23g32, G = g13(−g22g31 + g21g32) +
g23(g12g31− g11g32). According to Routh-Hurwitz criteria [16], E > 0, G > 0 and EF−G >
0. Hence, E∗ is locally asymptotically stable.

5. Numerical Analysis

In this section, we present some numerical simulation results for Caputo-sense
fractional-order eco-epidemic models. To accomplish this, we use Diethelm et al.’s predictor-
corrector approach to solve the defined model.the parameter values are chosen as s1 = 0.5,
s2 = 0.15, s3 = 0.2, s4 = 0.1, s5 = 0.4, s6 = 0.1, c = 0.5, ζ = 0.5, η = 0.3 and different values
of α = 1 and then the equilibrium point E4(0.794787, 0.0476298, 0.343099) is unstable (see
Figure 1). Fixing the derivative α as a variable. Here we consider the derivative value as
α = 0.92, the effect of the predator harvesting θ1 on the evolution of the three species and
clearly influences the final size of the three populations are shown in Figure 2.

Figure 1. Unstable solution for the interior equilibrium point α = 1.
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Figure 2. It is varying the harvesting rate of susceptible prey,infected prey and predator population
with different values of θ1 = 0, 0.1, 0.2 for the fractional order derivative α = 0.92.

6. Conclusions

In this study, we investigated a fractional-order derivative-based model of a three-
species food web. Each equilibrium point’s local stability in our proposed fractional-order
system has also been examined. The suggested mathematical model’s numerical simulation
results show that the proposed system changes from unstable to stable as the order of the
fractional derivative’s value, α, goes from 0 to 1. It is obvious that for different values
of α in the range 0 < α < 1, the unstable system with integer-order α = 1 becomes a
stable system. For the interior equilibrium point, when the derivative of α = 1, the system
becomes unstable, and if we change the order to fractional order, α = 0.92, the system
becomes stable. When the susceptible prey population harvesting rate increases, then the
infected prey population harvesting rate decreases in the fractional order derivative. Since
the susceptible prey population is inversely proportional to the infected prey population
in the system. Consequently, the derivative of fractional-order alpha makes an important
contribution to the proposed system’s dynamical stability.
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