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Abstract: In this work, we propose a novel alternative design technique based on combined SCAPS 
numerical simulations and Machine Learning (ML) computation to improve the photocurrent per-
formances for efficient eco-friendly optoelectronic applications. In this context, a new SnS absorber 
structure based on introducing gold (Au) nanoparticles (NPs) is proposed. It is revealed that the 
proposed design framework can predict the best spatial distribution of Au NPs allowing enhanced 
optical behavior of SnS absorber film. This can pave the way for the optoelectronic systems design-
ers to identify the geometry and the appropriate material for each layer of the device. Moreover, the 
results of the proposed SnS-based structure offer an innovative approach for the elaboration of eco-
friendly high-efficiency thin-film optoelectronics devices that is more promising than the previously 
reported designing techniques. 
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1. Introduction 
Photodetectors hold a prominent role in optoelectronic devices as they possess the 

capacity to convert optical signals into electrical signals. They find applications in various 
fields, including early missile threat detection, optical communication, environmental 
monitoring, water purification, flame detection, ultraviolet astronomy, environmental 
surveillance, remote sensing, biomedicine, and photography [1–3]. In this circumstance, 
various materials like perovskites, monolayers, colloidal quantum dots, and solution-pro-
cessable substances have been extensively investigated with the goal of addressing the 
primary challenges associated with conventional photodetectors [3–5]. Particularly, tin 
sulfide (SnS) stands out as a highly promising material. It is characterized by its non-toxic 
properties, chemical stability, Earth abundant, high carrier mobility, visible light-absorp-
tion ability, low recombination velocity, and a tunable direct bandgap [6,7]. These attrib-
utes collectively position SnS as an exceptional candidate for high-performance optoelec-
tronic devices. In addition, tin sulfide encompasses various phases, including SnS, Sn2S3, 
SnS2, Sn3S4, and Sn4S5, each characterized by distinct stoichiometric ratios of tin and sul-
fur. The synthesis and doping of these diverse SnS phases are achievable through various 
methods, such as pulse electrodeposition (PED), spray pyrolysis, physical vapor deposi-
tion (PVD), plasma-enhanced chemical vapor deposition (PECVD), chemical bath depo-
sition (CBD), electron beam evaporation (EBM), atomic layer deposition (ALD), and RF 
magnetron sputtering [6–10]. While certain SnS photodetectors have exhibited notewor-
thy performance, their achieved results still fall short of expectations. Moreover, the SnS 
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alloys are not free from some disadvantages. One of which is their low resistance to the 
aggressive influence of environmental factors such as temperature, oxygen and electro-
magnetic radiation. With that, there are new different classes of Sulfide-based materials 
with good electronic properties have been developed using appropriate experimental fa-
cilities [11,12]. To address this challenge, noble metal nanoparticles can be introduced in 
the SnS absorber layer. This can enhance the photodetector optoelectronic properties 
through improving light absorption and generating plasmonic effects. Nonetheless, in the 
domain of thin film semiconductor devices, a persistent iterative optimization process re-
sults in the inefficient utilization of energy and material resources, leading to elevated 
experimental costs and increased human labor demands. Intuitively, to expedite the ex-
perimentation timeline and reduce the overall cost, machine learning (ML) analysis tech-
niques can be a potential solution. The field of machine learning analysis has gained prom-
inence as a powerful tool for addressing challenges. It resides within the domain of artifi-
cial intelligence and is instrumental in uncovering latent insights within datasets. Machine 
learning can extract a diverse range of authentic material information through computa-
tional and data mining methodologies. In this work, employing ML analysis, we accu-
rately predict the plasmonic impact on optoelectronic properties by optimizing the posi-
tioning of gold nanoparticles within the SnS layer (top, middle, or bottom) and determin-
ing the most suitable nanoparticle radius to achieve optimal performance. The outcomes 
reveal that our eco-friendly SnS photodetector design, featuring gold nanoparticles, sig-
nificantly enhances its optoelectronic characteristics, establishing it as a promising choice 
for the development of cost-effective and environmentally friendly photodetectors. 

2. Device Structure and Modeling Frameworks 
2.1. Device Structure 

The proposed SnS absorber film consists of introducing Au NPs as shown in Figure 
1a. The latter shows a cross sectional view of the investigated SnS absorber and the spatial 
distribution of the introduced Au NPs is depicted in Figure 1b. From this figure, P denotes 
the NPs position from the surface following the z direction, r is the nanoparticle radius 
and S refers to the spacing between Au NPs. The proposed SnS absorber film is considered 
on a glass substrate and the thin-film thickness (tSnS) is fixed at 400 nm. It is to note that 
the chemical stability of the investigated structure including Au NPs was already investi-
gated and demonstrated by several published works [7,13,14]. 

 
(a) (b) 

Figure 1. (a) Cross-sectional view of plasmonic gold nanoparticles based on the SnS Absorber film 
(b) schematic of SnS surface decorated Au NPs. 

2.2. Modeling Frameworks 
In the initial phase of our study, we utilize the SCAPS (Solar cell Capacitance Simu-

lator) application to generate an extensive dataset [15]. Before that, Finite Difference Time 
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Domain method (FDTD) is used to estimate the absorbance of the proposed SnS thin-film 
based on specially distributed Au NPs. The details regarding the optical modeling of the 
proposed SnS absorber layer decorated with Au NPs can be found in our previous work 
[4]. Subsequently, in the second phase, we employ machine learning-based calculations to 
forecast the influence of the position and radius of gold nanoparticles on the optoelec-
tronic properties of the SnS photodetector. The ML model has been trained using our 
SCAPS-based calculation database. Correlation analysis and machine learning algorithms 
have been exploited to investigate the key parameters affecting the optical behavior of SnS 
absorber film. SCAPS-ML predictive approach has been developed to determine the best 
spatial distribution of Au NPs, offering fast and crucial guidance for experimental elabo-
ration of SnS-based optoelectronic devices with high-photodetection capabilities. 

3. Results and Discussion 
Figure 2 shows the variation of the photocurrent as a function of the NPs radius for 

the proposed SnS-based photodetector. It can be seen from this figure that the introduc-
tion of Au NPs leads to enhance the device optical behavior, where enhanced photocur-
rent is achieved as compared to the conventional SnS thin-film. This improvement can be 
attributed to the role of introducing Au NPs in enhancing light management in the SnS 
absorber layer through generating plasmonic effects. Besides, the highest photocurrent 
(Iph = 21 mA) is achieved for the specific Au NPs radius of 25 nm. It can be also revealed 
from Figure 2 that the use of higher radius values leads to decreasing the device photo-
current. This indicates the complex optical behavior of SnS absorber film when Au NPs 
are introduced, where their geometry and spatial distribution can greatly affect the film 
optical properties. This opens up new insights for the implementation of ML analysis tech-
niques to study and understand the effect of Au NPs plasmons on the photodetection ca-
pabilities of SnS photodetectors. 
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Figure 2. Variation of the photocurrent as a function of the Au NPs radius. 

In the context of machine learning modeling, and since the collected data contains an 
amount of observations of 138 samples, which appears to be a light volume feature space, 
a simple data visualization will be effective in providing guidance on feature sellectionand 
model selection as well. Accordingly, Figure 3 deals with both inputs (subfigures (a,b)) 
and outputs (subfigure (c)) of the dataset. First, the photocurrent variation shows a kind 
of monotonicity in the deterioration by demonstrating a kind of regular degradation be-
haviors over time. Similarly, such patterns can also be distinguished in the NPs positions. 
Whereas NPs Radius exhibit a sort of periodicity that corresponds neither to inputs nor 
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outputs. In this case, a first look at feature selection strongly suggests eliminating these 
unnecessary features, which definitely leads to model bias. Second, variations in NPs po-
sitions and photocurrent over time show clear behavior of data drift. This means that this 
type of data is subject to continuous change in its characteristics making the model gen-
eralization able to be out-of-date if one not considering such issue. 

 
Figure 3. Dataset features: (a,b) inputs; (b) output. 

In this work, suggestions for overcoming these challenges are twofold. First, the data 
is subjected to a feature selection process including only NPs positions features. After that, 
these features are also made subject to normalization layer via min-max scaling in the 
range [0, 1]. Second, adaptive learning rules are also integrated to ensure that the model 
is continually updated with new data and overcomes data drift issues. In this case, data 
drift problems are addressed by involving a neural network with long-short term memory 
(LSTM) as in [16,17]. It is worth mentioning that the network hyperparameters are manu-
ally tuned based on a simple error-trial basis, as in Table 1. Meanwhile, a 3-fold cross-
validation technique is used to ensure the stability and generalizability of the model on 
the data set. 

Table 1. List of obtained hyperparameters. 

Hyperparameters Assigned Values 
Maximum number of epochs 300 
Mini-batch size 30 
Neurons 20 
Learning algorithm Adam optimizer 
Initial learning rate 0.01 
Gradient threshold 1 
L2 regularization 0.0001 

The model is evaluated according to a robust criterion that includes different estima-
tion error measures, namely root mean squared error (RMSE), root mean of squares 
(RMS), mean absolute error (MAE). In addition, the learning model is also subject to an-
other performance evaluation criterion represented by R2. Simply put, the three errors 
should approach “zero”, while the R2, should approach the value 1 for better model per-
formance. It is worth mentioning that the application of these evaluation criteria was car-
ried out based on a validation set for each learning fold. This guarantees both the approx-
imation capacity and the generalizability of the learning models. Additionally, another 
comparative study between the proposed architect and an ordinary multilayer perceptron 
(MLP) is also conducted. The comparison conclusions obtained will be very effective in 
observing the benefits of adaptive learning. An important point to consider in such a case 
is that the MLP uses the same hyperparameters to ensure a fair comparison. 
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The obtained results are summarized in Table 2. The cross-validation results of 
RMSE, MSE and MAE show a way too far and better stability of LSTM compared to ordi-
nary MLP. Additionally, the mean values and standard deviation also explain this im-
portant information. This performance gap explains the need to use adaptive learning on 
the one hand and also the importance of feature selection on the other hand. Furthermore, 
the results obtained regarding R2 clearly prove the explain ability and importance of the 
predictions obtained. 

Table 2. Performances evaluation results. 

LSTM 
Crossvalidation Folds RMSE MSE MAE R2 
1 9.49e-4 9.00e-07 6.85e-4 0.72 
2 1.03e-3 1.07e-06 7.10e-4 0.75 
3 1.25e-3 1.56e-06 9.16e-4 0.65 
Average  1.07e-3 1.18e-06 7.7e-4 0.71 
Standard deviation 4.91e-4 0.051 

MLP 
Crossvalidation folds RMSE MSE MAE R2 
1 2.09e-3 4.40e-06 1.63e-3 −0.36 
2 1.65e-3 2.74e-06 1.31e-3 0.382 
3 1.37e-3 1.89e-06 1.12e-3 0.58 
Average  1.71e-3 3.01e-06 1.35e-3 0.20 
Standard deviation 8.11e-04 0.5003 

4. Conclusions 
In this paper a new computation framework based on combined Scaps numerical 

simulations and machine learning has been developed. The proposed approach can pre-
dict rapidly and accurately the photosensing of SnS based sensor including plasmonic 
effects and the impact of the gold nanoparticles position and size. Applying LSTM learn-
ing rules to such a data drift and complexity problem allows the learning model to be 
updated based on any changes in the data. This is explained by great performance in ap-
proximation metrics such as RMSE, MSE and MAE. Meanwhile, R2 clearly demonstrates 
the importance of the results from aexpandability perspective. As for the prospects, this 
work will continue to explore such a tool for more complex and massive data, to reach 
more generalized conclusions in the context of data complexity and drift. 
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