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Abstract: The effects of oxygen concentration and growth technique during the deposition process 
on the electrical properties of tin oxide alloy (SnOx) should be investigated for developing new eco-
friendly photosensors and photovoltaic devices. The present work aims to predict the electrical key 
governing parameters throughout the device developing processes such as the Energy level values 
and band-gap energy as function of the injected oxygen concentrations. For realization, over 100 
data points were collected by modeling the effect of oxygen contents on the SnOx electrical proper-
ties using Density Function Theory (DFT). Through extensive Machine Learning (ML) analysis, the 
impact of the oxygen concentration on the electrical properties and the material type is well pre-
dicted, where the applied ML prediction model for band-gap energy showed a good correlation 
between predicted values and the calculated ones using DFT computations. It is revealed that the 
combined DFT-ML-based approach can be a powerful tool to study and accelerate the developing 
of new highly efficient materials for microelectronic applications.  
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1. Introduction 
Tin oxide (SnOx) semiconducting alloys have been considered promising candidates 

for the next generation of microelectronic materials and have attracted considerable atten-
tion in developing high-performance sensing devices (e.g., photodetectors, Gas sensors, 
photocatalysts, photovoltaics, … etc.) because of their scalable elaboration techniques, 
tunable electrical and optical properties, good light-matter interactions, adjustable elec-
tronic energy band structures, and excellent gas molecules interaction properties [1–4]. 
Tuning the electrical and sensing properties of tin-oxide-based alloys can be carried out 
using deferent experimental approaches such as chemical doping, strain engineering and 
changing the elemental composition (i.e., tin and oxide). The latter technique is considered 
as an effective approach to modulate the optical, electrical and structural parameters, 
where it was demonstrated that the sensing properties of the material are significantly 
affected by the band-gap energy value and the elemental composition ratio in the SnOx 
alloy [4,5]. In other words, the oxygen concentration can be varied in the SnOx film, which 
can modify its electronic and optical properties. Consequently, the impact of oxygen con-
tent on the electrical characteristics of SnOx should be investigated to offer new insights 
in developing eco-friendly and high-performance devices for sensing applications.  

In this work, a new modeling framework approach is proposed to predict the elec-
trical key governing parameters throughout the device developing processes such as the 
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Energy level values and band-gap energy as function of the injected oxygen concentra-
tions. To do so, over 100 data points were collected by modeling the impact of the oxygen 
contents on the SnOx electrical properties using Density Function Theory (DFT). Through 
extensive combined DFT-ML (Machine Learning) analysis, the effect of the oxygen con-
centrations on the electrical properties and the material type (metal, P-type and N-type) 
is well predicted, where the applied ML prediction model for band-gap energy showed a 
good correlation between predicted values and the calculated ones using DFT computa-
tions.  

2. Modeling Frameworks 
In this section, multipurpose modeling approaches are considered to predict the elec-

trical properties of SnOx -based alloys based on combined DFT-ML calculations. The first 
step will be used to build the required database to forecast the electronic properties of 
SnOx thin-film using DFT computations. Secondly, the ML- based calculation will be em-
ployed to predict the impact of the oxygen concentration on the electrical properties and 
the material type of the tin-oxide materials.  

2.1. DFT Calculations  
In the present work, the DFT-based calculation technique was used to perform the 

band structure electrical properties of SnO super-cell [5–7]. The band structure calcula-
tions were carried out using generalized gradient approximation (GGA) with the Perdew-
Burke-Ernzerhof (PBE) functional and the Heyd-Scuseria-Ernzerhof screened Coulomb 
(HSE06) hybrid-functional [5]. The experimental lattice constants are used for the initial 
structure of SnO. Moreover, the tetragonal system of the rutile SnO with stable crystalline 
phase is considered. In order to study the impact of the oxygen concentration on the SnOx 
structure, additional interstitial oxygen atoms were introduced in the SnO super-cell at its 
lattice. In addition, the SnO semiconductor type is determined from the Fermi-level posi-
tion provided by DFT calculations. It is important to note that the SnO semiconductor 
type obtained from DFT simulations is in good agreement with the experimental results 
[4].  

2.2. ML Algorithm 
Machine learning (ME) has demonstrated to be a powerful tool in overcoming high-

cost experimental tests and practice limitations in understanding the parameters affecting 
material properties and their relationships [8]. Therefore, the use of ML techniques in the 
development of new materials for sensing applications, including SnOx alloy, is on an 
upward trajectory. In this work, we explore the use of ML techniques to assess the impact 
of oxygen concentration on the electrical behavior of SnOx alloy for sensing applications. 
The ML model has been trained using our DFT-based calculation database. Correlation 
analysis and machine learning algorithms have been employed to study key parameters 
affecting material properties and their interactions. DFT-ML predictive approach has been 
developed to determine the material type and the band-gap energy values associated with 
oxygen concentration, offering fast and crucial guidance for experimental elaboration of 
SnOx-based sensing devices.  

3. Results and Discussion 
The obtained band structure of SnO2 is depicted in Figure 1 using DFT calculations, 

it can be shown from this figure that the SnO2 material exhibits a wide band gap of 3.56 
eV with a direct transition mechanism at G symmetric point. The obtained results make 
SnO2 a potential material for developing Ultra-Violet photodetectors and gas sensors. 
Moreover, in order to investigate the impact of the oxygen concentration on the material 
band-gap energy, Figure 2 plots the variation of band-gap energy values as function of 
oxygen concentrations. It is clearly shown that the introduction of oxygen can induce 
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variations on the bond angle caused by the disorder of octahedra, which leads also to 
increase the tin oxide band gap values. The tunability of band-gap energy values and the 
type of material can open up new paths in developing multispectral photodetectors and 
new devices for gases sensing.  
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Figure 1. Band structure of thin-film SnO2 based on DFT calculations. 
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Figure 2. Variation of band gap energy as a function of the oxygen concentration for SnOx material. 

From an ML modeling perspective, this collected data can be visualized as presented 
by Figure 3 for a better understanding of both data change and complexity respectively. 
Figure 3a shows variation of energy gap with respect to oxygen concentration. Likewise, 
it represents differences in data linked to doping type. Regarding the former’s data drift, 
it is a somewhat exponential variation referring to a rapid change in data characteristics. 
Meanwhile, the doping type data points are divided into three categories namely metallic 
(m) and p-type (p), n-type (n) semiconductors. The obtained data distributions show a 
kind of data imbalance that is perfectly revealed by class ratio calculation in Figure 3b. 
Besides, it is worth mentioning that data patterns in this case do not show any signs of 
noise or outliers in collected measurements, which requires less data processing except 
for normalization. Under such circumstances, ML modeling requirements face two main 
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challenges, particularly data drift (i.e., continuous change in data characteristics) and data 
complexity (i.e., class imbalance). To combat such challenges, this work proposed the fol-
lowing contributions [9]. 

 
Figure 3. Visualizing data from perspective of ML modeling: (a) regression function and class scat-
ters; (b) Class proportion. 

Adaptive learning: Adaptive learning rules of the long-short term memory neural 
network are involved in this case, while training a single-layer neural network for both 
energy gap prediction and dope type classification. This ensures that the learning model 
is kept up-to-date by tracking only upcoming important new data. 

Data sampling: To solve the class imbalance problem, the synthetic minority over 
sampling technique is involved in this case [10]. Such a technique It helps to overcome 
this variation in class proportion ratio by generating synthetic examples of the minority 
class, thereby enabling fair representations of data points and preventing model bias to-
wards majority class. However, an important issue could arise as a result of this contribu-
tion. First, since adaptive learning rules from long-short term memory network experience 
deeper representations, 100 single-dimensional points are considered a lightweight prob-
lem to solve. This can lead to a so-called underfitting problem. Second, generating data 
using the aforementioned synthetic minority oversampling technique may result in dif-
ferent drawbacks related to increased risk of misclassification due to the difficulty in gen-
erating informative samples. Therefore, an additional process of monitoring learning and 
validating the ML model is urgently needed. Consequently, the cross-validation technique 
constitutes a third contribution to this work. 

Crossvalidation: cross-validation allows for efficient use of data, thereby increasing 
the robustness and reliability of performance estimation by dividing data into different 
folds and performing tests on the entire dataset [11]. In this work, the neural network used 
is subjected to manual tuning following simple error-trial learning rules. The following 
Table 1 presents the final parameters achieved for the classification and regression prob-
lems. 

Table 1. Parameters tuning results. 

Hyperparameters Regression Classification 
Maximum number of epochs 50 250 
Mini-batch size 10 5 
Neurons 20 30 
Learning algorithm Adam optimizer RMS propagation 
Initial learning rate 0.01 0.1 
Gradient threshold 1 1 
L2 regularization 0.0001 0.0001 
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Training and evaluation of the discussed ML model goes through a three-fold cross-
validation process for both problems. The performance of ML modeling for the regression 
process is evaluated using well-known metrics including root mean square error (RMSE), 
root mean squares (RMS), and mean absolute error (MAE). The expected result of these 
measurements is to get closer to “zero” for greater accuracy of approximation and gener-
alization. Additionally, the famous R2 metric is also included while when its value ap-
proaches “one” it refers to better performance.Similarly, classification performance eval-
uations involve four different metrics well used in the literature, including accuracy, F1 
score, recall, and precision. The expected result of the classification metrics is to approach 
the value “one”. In this work, we focused on collecting results from the validation set be-
cause they are more important than the training set. Because in this case, they make it 
possible to observe both generalization and approximation capacities at the same time. It 
is also worth mentioning that such experiments are conducted on i7 processing unit com-
puting power of 16 GB RAM and 12 MB cache memory. Additionally, MATLAB r2023a 
library is used as the main programming platform for this application. Table 2 is dedicated 
to summarizing results obtained from the whole experiment. On the one hand, and dis-
cussing results obtained on the regression problem, the prediction models behave in a 
similar way. This means that they have the ability to induce stability even across different 
datasets/folds. This is proven by the performance evaluation results of RMSE, MSE and 
MAE respectively in validation folds from 1 to 3. Their mean values and standard devia-
tion also explain the similarity of results obtained. Likewise, R2 values show the same pat-
terns of prediction stability and similarity between other folds, achieving an excellent per-
formance of 0.71. On the other hand, the avenged values of the classification metrics show 
impressive results in terms of stability and accuracy, reaching 0.99 for all metrics with a 
very small standard deviation of 0.008. While most models show 100% prediction perfor-
mance. 

Table 2. Summary of obtained results. 

Regression 
Crossvalidation Folds RMSE MSE MAE R2 
1 0.51 0.26 0.28 0.72 
2 0.41 0.17 0.20 0.71 
3 0.56 0.31 0.38 0.69 
Average  0.49 0.25 0.29 0.71 
Standard deviation 0.1341 0.01 

Classification 
Crossvalidation folds Accuracy F1 score Recall Precision 
1 1 1 1 1 
2 1 1 1 1 
3 0.98 0.98 0.98 0.98 
Average 0.99 0.99 0.99 0.99 
Standard deviation 0.008 

Overall, obtained results are promising for application of such modeling process in 
predicting the electronic, optical and electrical properties of wide band gap materials, 
which can be effective for the design of alternative optoelectronic and gas sensing devices. 
However, certain points/limitations must be taken into account when generalizing such 
investigations to real applications. These points can be addressed as follows. 
• 100 data points are somehow too small for results generalizability in terms of regres-

sion; 
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• 3 different types of classes with different propositions under a too small set of data 
can create problems of misrepresentation of data when using generative models dur-
ing data balancing; 

• There is a higher probability staking in overfitting when traying further number of 
cross validation folds. 

4. Conclusions 
In this paper, the effect of oxygen concentration on the electronic properties of SnOx 

material is investigated. First-principles calculations are carried out to estimate the band 
gap of SnOx material for various oxygen levels. It is found that the material band gap 
increases with the oxygen content increase to reach its highest value of 3.56 eV corre-
sponding to oxygen-rich SnOx. Machine Learning analysis are then performed to predict 
the electronic properties and material type of SnOx alloy with varied oxygen containing 
for photodetectors and Gas sensing applications. Adaptive learning rules of long-term 
memory under cross-validation techniques are involved during the ML modeling process. 
Additionally, synthetic minority oversampling techniques are integrated into the classifi-
cation process. The whole methodology turns out to be very effective for both regression 
and classification, achieving impressive results, especially for classification. Regarding fu-
ture opportunities, and consistent with the limitations discussed in Section 3, future op-
portunities will revolve around: (i) targeting an even more massive and complex dataset; 
(ii) discuss different ML tools under different adaptive learning algorithms; (iii) discuss 
other generative modeling and subsampling tools to address class imbalance issues. The 
obtained results make the proposed approach a power tool for fast and accurate predict-
ing the electrical properties metal oxides for sensing applications. 
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